摘要:
Techniques to facilitate estimating the frequency response of a wireless channel in an OFDM system are provided. The method and systems allow for combining signal information across multiple communication channels at one or more channel tap delays in order to determine appropriate taps for channel information.
摘要:
Systems and methodologies are described that facilitate improved pilot information to MIMO user devices without increasing interference of SISO user devices in a wireless communication environment. A data communication signal can be generated and transmitted at a first power level, and a continuous pilot waveform comprising pilot information related to the data signal can be generated and sent at a second power level below the first transmission power level. Alternatively, a discontinuous pilot waveform can be generated so that it does not overlap with pilot segments in the first waveform, and can be transmitted at the first power level without interfering with the first waveform as received by a SISO user device. A MIMO user device can receive both waveforms, and can employ the pilot waveform to better estimate a MIMO channel for the first waveform.
摘要:
A method for estimating a feedback channel for a wireless repeater using frequency domain channel estimation estimates an error correction term using a most recent channel estimate and cancels the error correction term from a current block of the receive signal. Then, the feedback channel is estimated using frequency domain channel estimation and using a current block of the pilot signal and the corrected block of the receive signal. A channel estimate error term may also be estimated and subtracted directly from the channel estimate.
摘要:
Systems and methodologies are described that enable serving cell selection in a wireless network with a multiple antenna repeater operable to support MIMO communications. In one example, a repeater using orthogonal frequency division multiplexing on the downlink can be equipped to receive, by one or more receive antennas, one or more signals using one or more radio frequency (RF) isolation schemes. The repeater can further be equipped to amplify and delay the one or more signals using one or more combination schemes. Moreover, the repeater can be equipped to transmit, by one or more transmit antennas, the amplified and delayed one or more signals, wherein at least one of the one or more receive antennas or the one or more transmit antennas includes two or more antennas.
摘要:
Techniques for transmitting data using single-carrier frequency division multiple access (SC-FDMA) multiplexing schemes are described. In one aspect, data is sent on sets of adjacent subbands that are offset from one another to achieve frequency diversity. A terminal may be assigned a set of N adjacent subbands that is offset by less than N (e.g., N/2) subbands from another set of N adjacent subbands assigned to another terminal and would then observe interference on only subbands that overlap. In another aspect, a multi-carrier transmission symbol is generated with multi-carrier SC-FDMA. Multiple waveforms carrying modulation symbols in the time domain on multiple sets of subbands are generated. The multiple waveforms are pre-processed (e.g., cyclically delayed by different amounts) to obtain pre-processed waveforms, which are combined (e.g., added) to obtain a composite waveform. A cyclic prefix is appended to the composite waveform to generate the multi-carrier transmission symbol.
摘要:
A method for monitoring feedback loop stability in a wireless repeater includes measuring a gain control metric in the feedback loop of the repeater periodically for a given time period where the gain control metric is indicative of a loop gain of the feedback loop of the repeater; and monitoring the magnitude of the gain control metric to determine the stability of the feedback loop of the repeater. In operation, a large magnitude of the gain control metric indicates instability in the feedback loop of the repeater.
摘要:
A method of controlling gains within a repeater may include determining a power control set point value which controls a transmit power of a mobile station (MS), and receiving a downlink signal from a base station transceiver system (BTS). The method may further include measuring a power of the received downlink signal, and computing a power level of a signal expected at the uplink of the repeater, wherein the computing is based on the measured downlink power and the power control set point value. Finally, the method may further include adjusting a gain of at least one amplifier based on the computed power level. An apparatus for controlling gains in a repeater may include a baseband processor for performing the above method.
摘要:
A wireless repeater includes a channel estimation block to estimate a feedback channel between the antennas of the repeater using frequency domain channel estimation. The repeater includes a pilot signal blanking circuit to blank out a selected number of samples of the pilot signal to improve the accuracy of the channel estimation. In another embodiment, the repeater replaces T samples of the pilot signal with a cyclic prefix.
摘要:
A wireless repeater introduces a low level noise to the signal path of the repeater where the introduced noise is used to facilitate channel estimation. The introduced low power level noise may be added to the receive signal or to the transmit signal. The low power noise signal ensures that the repeater always has a reference signal for performing channel estimation, even when the repeater is not receiving any incoming signal traffic. In one embodiment, a low noise signal is inserted to the transmit circuit of the repeater. In another embodiment, the repeater is configured to increase the noise figure of the receive circuit where the detected noise figure acts as a receive signal.
摘要:
In an embodiment, a first repeater configures a beacon signal that identifies the first repeater to one or more other repeaters. The first repeater transmits the configured beacon signal at a given transmission power level to the one or more other repeaters. The transmitted beacon signal is received at least by a second repeater. The second repeater reduces interference associated with other transmissions from the first repeater, such as retransmissions of donor signals, based on the received beacon signal.