摘要:
Systems and methodologies are described that enable serving cell selection in a wireless network with a multiple antenna repeater operable to support MIMO communications. In one example, a repeater using orthogonal frequency division multiplexing on the downlink can be equipped to receive, by one or more receive antennas, one or more signals using one or more radio frequency (RF) isolation schemes. The repeater can further be equipped to amplify and delay the one or more signals using one or more combination schemes. Moreover, the repeater can be equipped to transmit, by one or more transmit antennas, the amplified and delayed one or more signals, wherein at least one of the one or more receive antennas or the one or more transmit antennas includes two or more antennas.
摘要:
Systems and methodologies are described that enable serving cell selection in a wireless network with a multiple antenna repeater operable to support MIMO communications. In one example, a repeater using orthogonal frequency division multiplexing on the downlink can be equipped to receive, by one or more receive antennas, one or more signals using one or more radio frequency (RF) isolation schemes. The repeater can further be equipped to amplify and delay the one or more signals using one or more combination schemes. Moreover, the repeater can be equipped to transmit, by one or more transmit antennas, the amplified and delayed one or more signals, wherein at least one of the one or more receive antennas or the one or more transmit antennas includes two or more antennas.
摘要:
Methods and apparatuses are provided that include selecting resources for assigning to a device to mitigate relay self-interference when also communicating with a base station. The resources can be selected based on one or more factors, such as based on resources that are negotiated with the base station, or based on resources indicated as not desired for allocation from the base station, etc. In other examples, reference signals and control data can be communicated such as to mitigate relay self-interference as well.
摘要:
Methods and apparatuses are provided that include selecting resources for assigning to a device to mitigate relay self-interference when also communicating with a base station. The resources can be selected based on one or more factors, such as based on resources that are negotiated with the base station, or based on resources indicated as not desired for allocation from the base station, etc. In other examples, reference signals and control data can be communicated such as to mitigate relay self-interference as well.
摘要:
Techniques for sending signaling messages with beacon signals in a wireless communication network are described. In one design, a transmitter station may map a signaling message (e.g., a reduce interference request) to multiple code symbols. The transmitter station may select multiple resource elements from among a plurality of resource elements based on the multiple code symbols. In one design, each code symbol may be sent across frequency by selecting one of multiple subcarriers in one symbol period. In another design, each code symbol may be sent across time by selecting one of multiple symbol periods on one subcarrier. The transmitter station may generate a beacon signal having transmit power on the selected resource elements and no transmit power on remaining resource elements. The transmitter station may send the beacon signal to at least one receiver station.
摘要:
Techniques for sending signaling messages with beacon signals in a wireless communication network are described. In one design, a transmitter station may map a signaling message (e.g., a reduce interference request) to multiple code symbols. The transmitter station may select multiple resource elements from among a plurality of resource elements based on the multiple code symbols. In one design, each code symbol may be sent across frequency by selecting one of multiple subcarriers in one symbol period. In another design, each code symbol may be sent across time by selecting one of multiple symbol periods on one subcarrier. The transmitter station may generate a beacon signal having transmit power on the selected resource elements and no transmit power on remaining resource elements. The transmitter station may send the beacon signal to at least one receiver station.
摘要:
Techniques for transmitting data using single-carrier frequency division multiple access (SC-FDMA) multiplexing schemes are described. In one aspect, data is sent on sets of adjacent subbands that are offset from one another to achieve frequency diversity. A terminal may be assigned a set of N adjacent subbands that is offset by less than N (e.g., N/2) subbands from another set of N adjacent subbands assigned to another terminal and would then observe interference on only subbands that overlap. In another aspect, a multi-carrier transmission symbol is generated with multi-carrier SC-FDMA. Multiple waveforms carrying modulation symbols in the time domain on multiple sets of subbands are generated. The multiple waveforms are pre-processed (e.g., cyclically delayed by different amounts) to obtain pre-processed waveforms, which are combined (e.g., added) to obtain a composite waveform. A cyclic prefix is appended to the composite waveform to generate the multi-carrier transmission symbol.
摘要:
Systems and methodologies are described that facilitate mitigation of interference through uplink scheduling in a wireless communication environment. Access points can assign multiple terminals to a single tile or segment of shared resource (e.g., a time frequency region) to maximize the number of terminals supported. However, combinations of certain types of terminals can cause a significant increase in interference. In particular, allocating multiple terminals having a relatively high velocity (e.g., terminals located in moving vehicles) to a single tile can cause an unacceptable increase in interference. To mitigate interference, high velocity terminals can be identified. Once identified, terminals can be allocated to the available tiles based at least in part upon avoiding combinations that result in a significant increase in interference.
摘要:
Techniques for transmitting data using single-carrier frequency division multiple access (SC-FDMA) multiplexing schemes are described. In one aspect, data is sent on sets of adjacent subbands that are offset from one another to achieve frequency diversity. A terminal may be assigned a set of N adjacent subbands that is offset by less than N (e.g., N/2) subbands from another set of N adjacent subbands assigned to another terminal and would then observe interference on only subbands that overlap. In another aspect, a multi-carrier transmission symbol is generated with multi-carrier SC-FDMA. Multiple waveforms carrying modulation symbols in the time domain on multiple sets of subbands are generated. The multiple waveforms are pre-processed (e.g., cyclically delayed by different amounts) to obtain pre-processed waveforms, which are combined (e.g., added) to obtain a composite waveform. A cyclic prefix is appended to the composite waveform to generate the multi-carrier transmission symbol.
摘要:
Systems and methodologies are described that facilitate mitigation of interference through uplink scheduling in a wireless communication environment. Access points can assign multiple terminals to a single tile or segment of shared resource (e.g., a time frequency region) to maximize the number of terminals supported. However, combinations of certain types of terminals can cause a significant increase in interference. In particular, allocating multiple terminals having a relatively high velocity (e.g., terminals located in moving vehicles) to a single tile can cause an unacceptable increase in interference. To mitigate interference, high velocity terminals can be identified. Once identified, terminals can be allocated to the available tiles based at least in part upon avoiding combinations that result in a significant increase in interference.