Abstract:
A method for fabricating an optical interference display cell is described. A first electrode and a sacrificial layer are sequentially formed on a transparent substrate and at least two openings are formed in the first electrode and the sacrificial layer to define a position of the optical interference display cell. An insulated heat-resistant inorganic supporter is formed in each of the openings. A second electrode is formed on the sacrificial layer and the supporters. Finally, a remote plasma etching process is used for removing the sacrificial layer.
Abstract:
An optical interference color display comprising a transparent substrate, an inner-front optical diffusion layer, a plurality of first electrodes, a patterned support layer, a plurality of optical films and a plurality of second electrodes is provided. The inner-front optical diffusion layer is on the transparent substrate and the first electrodes are on the inner-front optical diffusion layer. The patterned support layer is on the inner-front optical diffusion layer between the first electrodes. The optical film is on the first electrodes and the second electrodes are positioned over the respective first electrodes. The second electrodes are supported through the patterned support layer. Furthermore, there is an air gap between the second electrodes and their respective first electrodes.
Abstract:
An optical-interference type reflective panel and a method for making the same are disclosed, wherein the display panel has a substrate on which multiple supporting layers are firstly formed. Then, a plurality of first conductive optical film stacks, spacing layers and multiple second conductive optical film stacks are sequentially formed on the substrate. Finally, once the spacing layers are removed, optical-interference regulators are formed. Since said supporting layers forming step is prior to the first conductive optical film stacks, a precise back-side exposing step is not necessary so that the making procedure of the panel is simplified.
Abstract:
The method for fabricating reflector plate for a reflective liquid crystal display and the device is disclosed. The present invention includes the formation of a protection layer over the glass substrate having thin film transistors and a layer of transparent electrodes on top, followed by the formation of a layer of undulating resin over the protection layer. If the reflector plate to be produced is a semi-transmissive type, a light-transmitting region is created over the protection layer. Since the protection layer is created in advance of the undulating resin outgrowth, the present method can effectively prevent reflection from the exposure stage during the lithography process, thus the problem of abnormal pattern marks occurring on the reflective surface can be avoided, and the exposure time and the production yield are enhanced.
Abstract:
An optical interference color display comprising a transparent substrate, an inner-front optical diffusion layer, a plurality of first electrodes, a patterned support layer, a plurality of optical films and a plurality of second electrodes is provided. The inner-front optical diffusion layer is on the transparent substrate and the first electrodes are on the inner-front optical diffusion layer. The patterned support layer is on the inner-front optical diffusion layer between the first electrodes. The optical film is on the first electrodes and the second electrodes are positioned over the respective first electrodes. The second electrodes are supported through the patterned support layer. Furthermore, there is an air gap between the second electrodes and their respective first electrodes.
Abstract:
A structure of a micro electro mechanical system and a manufacturing method are provided, the structure and manufacturing method is adapted for an optical interference display cell. The structure of the optical interference display cell includes a first electrode, a second electrode and posts. The second electrode comprises a conductive layer covered by a material layer and is arranged about parallel with the first electrode. The support is located between the first plate and the second plate and a cavity is formed. In the release etch process of manufacturing the structure, the material layer protects the conductive layer from the damage by an etching reagent. The material layer also protects the conductive layer from the damage from the oxygen and moisture in the air.
Abstract:
An optical-interference type reflective panel and a method for making the same are disclosed, wherein the display panel has a substrate on which multiple supporting layers are firstly formed. Then, a plurality of first conductive optical film stacks, spacing layers and multiple second conductive optical film stacks are sequentially formed on the substrate. Finally, once the spacing layers are removed, optical-interference regulators are formed. Since said supporting layers forming step is prior to the first conductive optical film stacks, a precise back-side exposing step is not necessary so that the making procedure of the panel is simplified.
Abstract:
A structure of a micro electro mechanical system and a manufacturing method are provided, the structure and manufacturing method is adapted for an optical interference display cell. The structure of the optical interference display cell includes a first electrode, a second electrode and posts. The second electrode comprises a conductive layer covered by a material layer and is arranged about parallel with the first electrode. The support is located between the first plate and the second plate and a cavity is formed. In the release etch process of manufacturing the structure, the material layer protects the conductive layer from the damage by an etching reagent. The material layer also protects the conductive layer from the damage from the oxygen and moisture in the air.
Abstract:
An optical-interference type display panel and a method for making the same are disclosed, wherein the display panel has a substrate on which multiple first conductive optical film stacks, supporting layers and multiple second conductive optical film stacks are formed. The substrate further has a plurality of connecting pads consisting of a transparent conductive film of the first conductive optical film stacks. Since the transparent conductive film is made of indium tin oxide, these connecting pads have the excellent anti-oxidation ability at their surface.
Abstract:
The method of manufacturing an optical interference color display is described. A first electrode structure is formed over a substrate first. At least one first area, second area and third area are defined on the first electrode structure. A first sacrificial layer is formed over the first electrode structure of the first area, the second area and the third area. Moreover, a second sacrificial layer is formed over the first sacrificial layer inside the second area and the third area. In addition, a third sacrificial layer is formed over the second sacrificial layer inside the third area. The etching rates of all sacrificial layers are different. Then, a patterned support layer is formed over the first electrode structure. Next, a second electrode layer is formed and the sacrificial layers are removed to form air gaps. Therefore, the air gaps are effectively controlled by using the material having different etching rates.