摘要:
Provided are an apparatus and method of calibrating azimuth of a mobile device. The apparatus includes: a magnetic field measuring unit having a plurality of magnetic sensors aligned in a constant angle interval on the mobile device and measuring magnetic field data indicating magnitudes of a magnetic field in different directions; and a controller generating a calibration table indicating a correspondence between an actual magnetic field trajectory formed by the magnetic field data and a theoretical magnetic field trajectory and calibrating azimuth of the mobile device using the calibration table.
摘要:
A walking control apparatus of a robot includes joint portions provided in each of a plurality of legs of the robot, a state database to store state data of each of the legs and state data of the joint portions corresponding to the state of each of the legs, when the robot walks, a position instruction unit to store desired positions corresponding to the state data of the joint portions, an inclination sensing unit to sense an inclination of an upper body of the robot, a torque calculator to calculate torques using the inclination of the upper body and the desired positions, and a servo controller to output the torques to the joint portions to control the walking of the robot. Since the robot walks by Finite State Machine (FSM) control and torque servo control, the rotation angles of the joint portions do not need to be accurately controlled. Thus, the robot walks with low servo gain and energy consumption is decreased. Since the robot walks with low servo gain, each of the joints has low rigidity and thus shock generated by collision with surroundings is decreased.
摘要:
A humanoid robot that achieves stable walking based on servo control of a joint torque and a walking control method thereof. The humanoid robot calculates a joint position trajectory compensation value and a joint torque compensation value using a measurement value of a sensor, compensates for a joint position trajectory and a joint torque using the calculated compensation value, and drives a motor mounted to each joint according to the compensated joint torque.
摘要:
Disclosed are a robot, in which a walking pattern of the robot is changed into a new walking pattern by stages when it is necessary to suddenly change the walking pattern to promote stabilization in walking, and a walking control apparatus and method thereof. When the walking pattern is changed, a preview time is decreased by stages and then is restored to its original state and thus it is possible to prevent the robot from losing its balance.
摘要:
Disclosed is a method of defining control angles to use a limit cycle in order to balance a biped walking robot on a three-dimensional space. In order to balance an FSM-based biped walking robot right and left on a three-dimensional space, limit cycle control angles to balance the robot according to states of the FSM-based robot are set on the three-dimensional space, and the limit cycle control angles on the three-dimensional space are controlled using a sinusoidal function to allow relations between the control angles and control angular velocities to form a stable closed loop within a limit cycle.
摘要:
Disclosed herein are an apparatus and method for controlling stable walking of a robot based on torque. In a method of enabling stable walking by controlling torque of a hip joint portion using a Finite State Machine (FSM) without solving a complicated dynamic equation, torque of a stance leg is finally calculated using pose control torque of an upper body, pose control torque of a swing leg, and initial pose control torque of a stance leg supporting the upper body. Accordingly, the robot may stably walk with torque balance. Since gravity compensation torque is applied, a torso of the robot is not inclined and the pose of the robot is stably maintained.
摘要:
Disclosed are a robot, in which a walking pattern of the robot is changed into a new walking pattern by stages when it is necessary to suddenly change the walking pattern to promote stabilization in walking, and a walking control apparatus and method thereof. When the walking pattern is changed, a preview time is decreased by stages and then is restored to its original state and thus it is possible to prevent the robot from losing its balance.
摘要:
Disclosed herein are a feature point used to localize an image-based robot and build a map of the robot and a method of extracting and matching an image patch of a three-dimensional (3D) image, which is used as the feature point. It is possible to extract the image patch converted into the reference image using the position information of the robot and the 3D position information of the feature point. Also, it is possible to obtain the 3D surface information with the brightness values of the image patches to obtain the match value with the minimum error by a 3D surface matching method of matching the 3D surface information of the image patches converted into the reference image through the ICP algorithm.
摘要:
Provided is a method of using a rotational movement amount of a mobile device including obtaining images at two different points on a path along which the mobile device moves, searching for matching points with respect to the obtained images and obtaining an image coordinate value of each of the matching points, sensing linear movement of the mobile device and obtaining a linear movement amount using a result of sensing, and obtaining the rotational movement amount using the image coordinate values and the linear movement amount.
摘要:
Disclosed are a robot, which builds a map using a surface data of a three-dimensional image, from which a dynamic obstacle is removed, and a method of building a map for the robot. The method includes sequentially acquiring first and second surface data of a route on which the robot moves; matching the first and second surface data with each other to calculate a difference between the first and second surface data; detecting a dynamic obstacle from the first and second surface data according to the difference between the first and second surface data; generating a third surface data by removing the dynamic obstacle from at least one of the first and second surface data; and matching the third surface data and any one of the first and second surface data with each other to build the map.