摘要:
Disclosed herein are a feature point used to localize an image-based robot and build a map of the robot and a method of extracting and matching an image patch of a three-dimensional (3D) image, which is used as the feature point. It is possible to extract the image patch converted into the reference image using the position information of the robot and the 3D position information of the feature point. Also, it is possible to obtain the 3D surface information with the brightness values of the image patches to obtain the match value with the minimum error by a 3D surface matching method of matching the 3D surface information of the image patches converted into the reference image through the ICP algorithm.
摘要:
Disclosed herein are a feature point used to localize an image-based robot and build a map of the robot and a method of extracting and matching an image patch of a three-dimensional (3D) image, which is used as the feature point. It is possible to extract the image patch converted into the reference image using the position information of the robot and the 3D position information of the feature point. Also, it is possible to obtain the 3D surface information with the brightness values of the image patches to obtain the match value with the minimum error by a 3D surface matching method of matching the 3D surface information of the image patches converted into the reference image through the ICP algorithm.
摘要:
A simultaneous localization and map building method of a mobile robot including an omni-directional camera. The method includes acquiring an omni-directional image from the omni-directional camera, dividing the obtained omni-directional image into upper and lower images according to a preset reference to generate a first image, which is the lower image, and a second image, which is the upper image, extracting feature points from the first image and calculating visual odometry information calculating visual odometry information to track locations of the extracted feature points based on a location of the omni-directional camera, and performing localization and map building of the mobile robot using the calculated visual odometry information and the second image as an input of an extended Kalman filter.
摘要:
Disclosed herein are a method and apparatus for extracting feature points using hierarchical image segmentation and an image based localization method using the extracted feature points. An image is segmented using an affinity degree obtained using information observed during position estimation, new feature points are extracted from segmented areas in which registered feature points are not included, and position estimation is performed based on the new feature points. Accordingly, stable and reliable localization may be performed.
摘要:
Two-dimensional image information and three-dimensional image information of a subject are acquired, facial recognition is performed using the two-dimensional image information to determine whether a recognized face is a registered user's face, an elliptical model of the user is matched to the three-dimensional image information to calculate an error if it is determined that the recognized face is the user's face, and it is determined whether the user's face is improperly used based on the error. The subject's face is determined using the two-dimensional image information and the three-dimensional image information of the subject and it is determined whether the recognized face is improperly used, thereby improving facial recognition reliability. Thus, information security is improved.
摘要:
A walking robot and a simultaneous localization and mapping method thereof in which odometry data acquired during movement of the walking robot are applied to image-based SLAM technology so as to improve accuracy and convergence of localization of the walking robot. The simultaneous localization and mapping method includes acquiring image data of a space about which the walking robot walks and rotational angle data of rotary joints relating to walking of the walking robot, calculating odometry data using kinematic data of respective links constituting the walking robot and the rotational angle data, and localizing the walking robot and mapping the space about which the walking robot walks using the image data and the odometry data.
摘要:
A system and method for extracting 3D coordinates, the method includes obtaining, by a stereoscopic image photographing unit, two images of a target object, and obtaining 3D coordinates of the object on the basis of coordinates of each pixel of the two images, measuring, by a Time of Flight (TOF) sensor unit, a value of a distance to the object, and obtaining 3D coordinates of the object on the basis of the measured distance value, mapping pixel coordinates of each image to the 3D coordinates obtained through the TOF sensor unit, and calibrating the mapped result, determining whether each set of pixel coordinates and the distance value to the object measured through the TOF sensor unit are present, calculating a disparity value on the basis of the distance value or the pixel coordinates, and calculating 3D coordinates of the object on the basis of the calculated disparity value.
摘要:
A volume cell (VOXEL) map generation apparatus includes an inertia measurement unit to calculate inertia information by calculating inertia of a volume cell (VOXEL) map generator, a Time of Flight (TOF) camera to capture an image of an object, thereby generating a depth image of the object and a black-and-white image of the object, an estimation unit to calculate position and posture information of the VOXEL map generator by performing an Iterative Closest Point (ICP) algorithm on the basis of the depth image of the object, and to recursively estimate a position and posture of the VOXEL map generator on the basis of VOXEL map generator inertia information calculated by the inertia measurement unit and VOXEL map generator position and posture information calculated by the ICP algorithm, and a grid map construction unit to configure a grid map based on the recursively estimated VOXEL map generator position and posture.
摘要:
An augmented reality (AR) service apparatus includes a camera to capture an actual image, a controller to receive feature point information about the captured image from at least one of a plurality of base stations (BSs), detect a location of the camera by matching data of feature points with data of the image, and provide location-based information in a same direction as the captured image according to the location of the camera, and a display to realize an AR service by combining the captured image with the location-based information under control of the controller.
摘要:
Disclosed herein is a method of building a map of a mobile platform moving in a dynamic environment and detecting an object using a 3D camera sensor, e.g., an IR TOF camera sensor, for localization. A localization technology to separate and map a dynamic object and a static object is applied to a mobile platform, such as an unmanned vehicle or a mobile robot. Consequently, the present method is capable of accurately building map information based on the static object in a dynamic environment having a large number of dynamic objects and achieving a dynamic object avoidance or chasing function using position information acquired to build the map.