Abstract:
A system and method for optimizing video-based tracking of an object of interest are provided. A video of a regularized motion environment that comprise multiple video frames is acquired and an initial instance of an object of interest in one of the frames is then detected. An expected size and orientation of the object of interest as a function of the location of the object is then determined. The location of the object of interest is then determined in a next subsequent frame using the expected size and orientation of the object of interest.
Abstract:
A printer compensates for printing errors occurring during production of the layers for the formation of an object in a three-dimensional printer. The printer includes an optical sensor that generates data corresponding to edges of each layer of the object after each layer is printed. Differences between the raster data used to eject the material to form a layer and the data received from the optical sensor are used to modify the raster data that operates a printhead to form a next layer in the object.
Abstract:
A three-dimensional object printer ejects drops of a build material from a plurality of ejectors in a first printhead to form an object on a first region of a member and ejects drops of a support material from a plurality of ejectors in a second printhead to support the object on the first region of the member. The second printhead ejects drops of the support material onto a second region of the member that is separate from the first region to form a substrate layer. The first printhead ejects drops of the build material onto the substrate layer to form a printed test pattern. An image sensor generates image data of the printed test pattern to identify an inoperable ejector in the first printhead.
Abstract:
Methods and systems print test patterns in different test pattern areas on print media using a printer to produce a printed item. The printer has a printing width in a cross-process direction, and each of the test pattern areas is in a different cross-process location of the printing width. The test pattern areas are distributed across the entire printing width, and each of the test pattern areas partially overlaps at least one other test pattern area in the cross-process direction. Next, these methods and systems individually scan the sections of the printed item using a scanner that has a scanning width that is less than the printing width. This produces individual scans of the test pattern areas. The widths of the test pattern areas are equal to or less than the scanning width. Then, these methods and systems can calibrate cross-process characteristics of the printer based on the scans.
Abstract:
An inkjet printer forms low and high area coverage test patterns using inkjets in a printhead. The printer identifies process direction offsets for the inkjets in both test patterns using scanned image data of the printed test patterns. The printer identifies a level of cross-talk in the printhead with reference to a standard deviation difference between the process direction offsets identified in the low area coverage and high area coverage test patterns. The printer generates a recommendation for an operational configuration of the printhead based on the identified level of cross-talk.
Abstract:
An inkjet printer is configured to capture image data of a bare rotating imaging surface and use the image data of the bare rotating imaging surface to remove noise from subsequent images of printed ink on the rotating imaging surface. A controller in the printer is configured to measure cross-correlations between margins in the bare rotating imaging surface image data and margins in the subsequent images of printed ink to identify areas of alignment between the image data of the bare rotating imaging surface and the subsequent images of printed ink. The data in the areas in the image data of the bare rotating imaging surface that are aligned with areas in the subsequent images are used to remove the background noise produced by structure in the rotating imaging surface.
Abstract:
A method analyzes image data of a test pattern printed on an image receiving member by a printer. The method includes identifying a process direction position for each row of dashes in a test pattern printed on an image receiving member, identifying a center of each dash in a cross-process direction, identifying an inkjet ejector that formed each dash in the row of dashes. These data are used to identify a process direction position for each printhead, a cross-process displacement for each column of printheads, and a stitch displacement in the cross-process direction between neighboring printheads in a print bar unit that print a same color of ink. An actuator can be operated with reference to the identified process direction positions, cross-process displacements, and the identified stitch displacements to move at least some of the printheads in the printer.