Abstract:
A magnetic field element includes magnetic field portions and a coupling portion and is rotatable on a rotation axis along a given direction. Each magnetic field portion includes a magnet and magnetic plates. The magnet includes first and second pole faces having different polarities from each other in the given direction. The magnetic-material plates are provided on the first and second pole faces. The magnetic field portions are annularly arranged along a circumferential direction around the rotation axis and spaced in the circumferential direction from one another. The coupling portion is made of a non-magnetic material and couples the magnetic field portions to one another.
Abstract:
A rotor includes a core extending in a predetermined direction, and a plurality of magnets. The core has parts formed by magnetic materials and extending in the predetermined direction. The parts are arranged in a loop around the part, and face the part through gaps. The magnets are buried in the gaps in the form of a loop in the core. The magnets have pole faces extending in the predetermined direction. In each of the magnets, at least one of ends of the magnet protrudes forward in parallel to the predetermined direction with respect to an end of the part that is on the same side with the at least one of the ends of the magnet.
Abstract:
At a time of a heating high-load operation, a harmonic current is flown in an armature winding to induction-heat rare-earth magnets, thus reducing a residual magnetic flux density. Thereby, the number of rotations of a radial gap type motor is improved. The rare-earth magnets are provided near a cooling medium passage extending substantially in parallel with a flow line of a cooling medium, so that the cooling medium recovers heat of the heated rare-earth magnets. At a time of a cooling high-load operation, a greater number of rotations are obtained with respect to the same torque command value, by a field weakening control by means of a current-phase advance.
Abstract:
An axial gap rotary electric machine includes a rotor, an armature and a stator. The rotor is a magnetic body, which is capable of rotating in a circumferential direction about a rotation axis. The armature includes an armature coil opposed to the rotor from one side in a rotation axis direction parallel to the rotation axis. The stator causes the armature coil to interlink with a magnetic field flux from the other side in the rotation axis direction via the rotor.
Abstract:
The field magnet is formed of, for example, two permanent magnets, and a width of the field magnet increases from a center toward both ends thereof in a monotonically non-decreasing manner. The field magnet includes, at the both ends thereof, projecting portions projecting to a side opposite to a rotation axis. The field core includes a penetration hole through which the field magnet is caused to penetrate. The penetration hole includes penetration surfaces which cover magnetic pole surfaces of the field magnet, respectively. Specifically, the penetration surface includes concave portions with which the projecting portions are fitted. When the field magnet is inserted, the penetration surfaces serve as a guide which guides the field magnet, and accordingly the field magnet can be caused to penetrate through the penetration hole with ease.
Abstract:
A magnetic field element includes magnetic field portions and a coupling portion and is rotatable on a rotation axis along a given direction. Each magnetic field portion includes a magnet and magnetic plates. The magnet includes first and second pole faces having different polarities from each other in the given direction. The magnetic-material plates are provided on the first and second pole faces. The magnetic field portions are annularly arranged along a circumferential direction around the rotation axis and spaced in the circumferential direction from one another. The coupling portion is made of a non-magnetic material and couples the magnetic field portions to one another.
Abstract:
A compression mechanism has a cylinder, a suction passage and a discharge passage. The suction passage of a cylinder is connected to a suction pipe. The discharge passage is open to an inner space of a sealed housing. A discharge gas is discharged through a discharge pipe. The cylinder is formed with a communicating passage extending from a suction passage to a suction pressure chamber to lead a suction gas in the suction passage into the suction pressure chamber and thereby allow a pressure of the suction gas in the suction passage to act on an outside surface of the cylinder.
Abstract:
A rotor includes a core extending in a predetermined directions, and a plurality of magnets. The core has parts formed by magnetic materials and extending in the predetermined direction. The parts are arranged in a loop around the part, and face the part through gaps. The magnets are buried in the gaps in the form of a loop in the core. The magnets have pole faces extending in the predetermined direction. In each of the magnets, at least one of ends of the magnet protrudes forward in parallel to the predetermined direction with respect to an end of the part that is on the same side with the at least one of the ends of the magnet.
Abstract:
A compressor has a cylindrical sealed container, a compression mechanism and a motor. The compression mechanism has a cylinder with an intake passage passing through the cylinder in the radial direction. The sealed container has a coupling member having a tip end face facing the periphery of the intake passage in the outer face of the cylinder and a base end to which an intake pipe is mounted. The tip end face of the coupling member serves as a flat sealed face. A concave groove is formed in a peripheral part around the intake passage in the outer face of the cylinder and an O ring is fitted therein. The O ring is pressed against the tip end face of the coupling member, sealing a gap between the cylinder and the coupling member.
Abstract:
The present invention provides a permanent-magnet-synchronous-motor having a stator with concentrated windings with the following structure so that permanent magnet (6) is hard to subjected to demagnetization magnetic field: 0.3 Lg