摘要:
A semiconductor device including a shunt interconnection which operates at higher speed and permits high density integration is provided. In the semiconductor device including the shunt interconnection, a shunt connection region for a word line and a first shunt interconnection including a metal are formed in the memory cell region. In the memory cell region, shunt connection region and shunt interconnection are electrically connected with each other through a word line contact plug formed in a contact hole.
摘要:
A semiconductor device is comprised of: an element isolating film formed on one major surface of a semiconductor substrate; an element forming region formed on the major surface and surrounded by the element isolating film; a gate electrode formed via a gate insulating film on the element forming region and extended over the element isolating film; first and second impurity regions formed in the element forming region, whose portions exposed from a surface of the semiconductor substrate are made in contact with the element isolating film and are located opposite to each other under the gate electrode; a first insulating film formed near the gate electrode on the first impurity region, and extended over the gate electrode and near an extended portion of the gate electrode within the element isolating film; and a second insulating film formed near the gate electrode on the second impurity region. In this semiconductor device, a distance defined from an outer edge of the gate electrode on the side of the first impurity region to another outer edge of the first insulating film on the side apart from the gate electrode is longer than a distance defined from an outer edge of the gate electrode on the side of the second impurity region to another outer edge of the second insulating film on the side apart from the gate electrode.
摘要:
The present invention provides an improved static random access memory which can be manufactured into values as designed by photolithography. Second direct contract for connecting active region and ground line for first and second memory cells is provided at a boundary between the first memory cell and second memory cell. Second direct contact is divided into a plurality of portions.
摘要:
A groove is formed at a surface of a p.sup.- -well region. One of source/drain regions of each of access transistors has an n.sup.- -impurity region and an n.sup.+ -impurity region forming an LDD structure. Another n.sup.- -impurity region is disposed such that n.sup.+ -impurity region is located between these n.sup.- -impurity regions, and is formed at the whole bottom surface of groove. Thereby, it is possible to provide a semiconductor memory device of a high performance including an SRAM in which resistance against soft error is improved, a junction leak current is reduced and a current consumption during standby can be reduced.
摘要:
An n.sup.+ buried layer is formed on a surface of p.sup.- semiconductor substrate. An n.sup.- epitaxial growth layer and an n.sup.+ diffusion layer are formed on a surface of n.sup.+ buried layer. A p.sup.- base region and p.sup.+ external base region adjoining to each other are formed on a surface of n.sup.- epitaxial growth layer. An an n.sup.+ emitter region is formed at a surface of p.sup.- base region. An emitter electrode is formed adjacently to n.sup.+ emitter region. The emitter electrode is made of polycrystalline silicon doped with phosphorus at a concentration from 1.times.10.sup.20 cm.sup.-3 to 6.times.10.sup.20 cm.sup.-3.
摘要翻译:在p-半导体衬底的表面上形成n +掩埋层。 在n +掩埋层的表面上形成n外延生长层和n +扩散层。 在n-外延生长层的表面上形成彼此相邻的p-基区和p +外基区。 在p基极区的表面形成n +射极区。 发射极电极与n +发射极区域相邻形成。 发射电极由掺杂浓度为1×10 20 cm -3至6×10 20 cm -3的磷的多晶硅制成。
摘要:
There is disclosed a C-BiCMOS semiconductor device in which a base electrode (300) of an NPN bipolar transistor and a drain electrode (360) of a PMOS transistor are formed of the same polycrystalline semiconductor, in which a base electrode (310) of a PNP bipolar transistor and a drain electrode (350) of an NMOS transistor are formed of the same polycrystalline semiconductor, and in which a source electrode (530) of the PMOS transistor and a source electrode (520) of the NMOS transistor are formed of aluminium wiring. The C-BiCMOS semiconductor device achieves preferable electric conductivity in the source electrodes, size reduction in the drain electrodes, and simplified process steps in the formation of the base electrodes of the bipolar transistors, so that the size of the devices is reduced in simple process steps without deterioration of the electric conductivity.