Abstract:
A plurality of fibre layers is stacked to form a fibre insertion extending in a longitudinal direction of the shell part to be manufactured, whereby a core element having a tapered edge section is arranged along the fibre insertion. The fibre layers are stacked so that the tapered edge section of the core element is wedged into the fibre insertion. The core element is composed by a first and a second core part that are arranged along each other. The first core part forms at least part of the tapered edge section of the core element. The surface of the first core part has a higher permeability to liquid polymer than that of the surface of the second core part so that, during infusion, liquid polymer penetrates the surface of the first core part more readily than it penetrates the surface of the second core part.
Abstract:
The method comprises positioning a first blade (10A) in substantially vertical position, connecting first ends of a first and a second cable section (24, 26), respectively, with a structure included by the nacelle (6), connecting second ends (30) of the first and the second cable section (24, 26), respectively, with the repair platform (18) and lifting the repair platform along said blade (10A) by means of the first and second cable sections (24, 26). The first and second cable sections (24, 26) are positioned so that they extend over the hub (8) and are supported at a distance from each other between root regions (16) of a second and a third blade (10B, 10C), respectively.
Abstract:
A method for manufacturing a blade shell part of a wind turbine blade includes providing a mould for manufacturing a blade shell part of the wind turbine blade. The mould has a first moulding side with a first moulding surface that defines an outer shape of the blade shell part. The method comprises providing a blade shell part on the first moulding surface and providing a support element and attaching the support element to a fastening section of the blade shell part. Attaching the support element includes applying adhesive between the support element and the fastening part. The method also includes providing an air heating assembly having a cover extending in a longitudinal direction between a first cover end and a second cover end and extending in a transverse direction between a primary cover end and a secondary cover end, the cover defining a cavity.
Abstract:
A method of joining first and second blade components of a rotor blade of a wind turbine includes providing corresponding first and second positioning elements at an interface of the first and second blade components. The method also includes aligning and securing the first positioning element of the first blade component with the second positioning element of the second blade component so as to temporarily secure the first and second blade components together. Further, the corresponding first and second positioning elements maintain a desired spacing between the first and second blade components. Moreover, the method includes permanently securing the first and second blade components together such that the desired spacing is maintained between the first and second blade components.
Abstract:
The present invention relates to method of manufacturing a wind turbine blade (10) the method comprising the steps of providing a first shell half (61) and a second shell half (62), providing a shear web (64) having a first edge (65) and an opposing second edge (66), and attaching the first edge (65) of the shear web (64) to an inner surface (67) of the first shell half (61). One or more guide members (70) are mounted onto an inner surface (68) of the second shell half (62) for guiding the shear web, each guide member comprising a hollow body (71) and a guiding surface (72).
Abstract:
The present invention relates to a pre-manufactured spar cap for a wind turbine blade comprising a spar cap structure comprising a plurality of fibre-reinforced composite elements arranged in stacked rows and separated by interlayers and a first and/or second damage tolerant cover sheet. The first and/or second damage tolerant cover sheets each comprises a first damage tolerant fibre layer and a second damage tolerant fibre layer attached to each other in attachment areas, wherein the attachments areas are separated from each other by a distance between 1-5 cm. Furthermore, the spar cap structure and the first and/or second damager tolerant cover sheet are embedded in a first cured resin. The present invention also relates to a damage tolerant cover sheet as such, as well as a wind turbine comprising a first and/or second damage tolerant cover sheet. Also, the present invention relates to methods of manufacturing a premanufactured spar cap, a wind turbine shell member and a wind turbine blade comprising the first and/or second damage tolerant cover sheet.
Abstract:
A shell core (1) configured for being incorporated in a shell of a fiber reinforced polymer composite structure wherein:
the core has a first surface (2) and an opposite second surface (3), a first groove (4) is formed in the first surface (2) and divides the core into a first core part (5) and a second core part (6), the first groove (4) is defined by two opposing side walls (7a,7b) and a bottom (8), the distance T1 between the bottom (8) of the groove (4) and the second surface (3) of the core is of such a size that the core is flexible/bendable along the first groove, and the opposing walls (7a,7b) converge towards the bottom (8) forming an angle A1 of at least 45° with each other.
Abstract:
An interlayer sheet for a spar cap is provided. The interlayer sheet includes a first fibre layer having a first plurality of fibres with a first upper fibre surface and a first lower fibre surface, and a second fibre layer having comprising a second plurality of fibres with a second upper fibre surface and a second lower fibre surface. The first fibre layer is arranged on top of the second fibre layer, such that the first lower fibre surface is in contact with the second upper fibre surface. The first fibre layer is of a different characteristic than the second fibre layer. A number of the interlayer sheets may be arranged between a plurality of pre-cured fibre-reinforced elements to make a spar cap for a wind turbine blade.
Abstract:
A rotor blade for a wind turbine is disclosed. The rotor blade is comprising a first shell and a second shell, forming a first aerodynamic surface, a second aerodynamic surface, a trailing edge, and a leading edge. Furthermore, the rotor blade has at least one connective element having at least a first shell support portion, a second shell support portion, and an element support portion, wherein the first shell support portion is connected to the element support portion by a first arm, wherein the second shell support portion is connected to the element support portion by a second arm. The connective element is arranged, mounted, and/or attached between the first shell and the second shell by a first shell connection being effective between the first shell support portion and the first shell, by a second shell connection being effective between the second shell support portion and the first shell, and by an element connection being effective between the element support portion and the second shell.
Abstract:
A wind turbine blade comprising a plurality of spar components extending along the longitudinal axis and providing the main bending stiffness of the wind turbine blade a major principal axis defining a structural pitch angle of at least 1° with respect to a chord line, and including: one or more suction-side spar caps each having a centre line; one or more pressure-side spar caps each having a centre line; and one or more shear webs distributed around a central shear web line and at least one of which being connected to first spar caps, wherein at least one suction-side spar cap centre lines is arranged with a first chordwise distance to the central shear web line, and at least one pressure-side spar cap centre lines is arranged with a second, different, chordwise distance to the central shear web line.