Abstract:
An outlet (70, 75, 76, 78, 79) for a Local Area Network (LAN), containing an integrated adapter (21, 25) that converts digital data to and from analog video signal. Such an outlet allows using analog video units in a digital data network (80), eliminating the need for a digital video units or external adapter. The outlet may include a hub (31, 41) that allows connecting both an analog video signal via an adapter, as well as retaining the data network connection, which may be accessed by a network jack (73). The invention may also be applied to a telephone line-based data networking system. In such an environment, the data networking circuitry as well as the analog video adapters are integrated into a telephone outlet, providing for regular telephone service, analog video connectivity, and data networking as well. In such a configuration, the outlet would have a standard telephone jack (71), an analog video jack (72) and at least one data networking jack (73). Outlets according to the invention can be used to retrofit existing LAN and in-building telephone wiring, as well as original equipment in new installation
Abstract:
A network for transporting power and multiplexed data and digital telephone signals. The network includes at least three nodes and first and second wiring segments in a building for carrying the multiplexed data and digital telephone signals, and at least one of the segments is configured to additionally carry a power signal. A power consuming component is connected to the at least one wiring segment and is powered by the power signal carried by that segment. Each wiring segment connects a different pair of the nodes together to form, with nodes nodes, a packet based bi-directional communication link. One of the nodes contains communication link composed of a repeater, a bridge, or a router connectable to a data unit. At least one of the nodes is connected to a remote data unit external to the building for coupling the remote data unit to at least one of said communication links.
Abstract:
A service outlet for coupling a data unit to a wired digital data signal and for coupling a service unit to an analog service signal, for use with a service wire pair installed in walls of a building, the service wire pair concurrently carrying a wired bi-directional digital data signal and an analog service signal carried over a service signal frequency band, using frequency division multiplexing, wherein the wired digital data signal is carried over a frequency band distinct from the service signal frequency band. The outlet has a single enclosure and, within the enclosure: a wiring connector; first and second filters coupled to the wiring connector; a service connector coupled to the first filter and connectable to the service unit for coupling the service unit to the analog service signal; a service wiring modem coupled to the second filter; and a power supply coupled to the service wiring modem.
Abstract:
A service outlet for coupling a data unit to a wired digital data signal and for coupling a service unit to an analog service signal, for use with a service wire pair installed in walls of a building, the service wire pair concurrently carrying a wired bi-directional digital data signal and an analog service signal carried over a service signal frequency band, using frequency division multiplexing, wherein the wired digital data signal is carried over a frequency band distinct from the service signal frequency band. The outlet has a single enclosure and, within the enclosure: a wiring connector; first and second filters coupled to the wiring connector; a service connector coupled to the first filter and connectable to the service unit for coupling the service unit to the analog service signal; a service wiring modem coupled to the second filter; and a power supply coupled to the service wiring modem.
Abstract:
A service outlet for coupling a data unit to a wired digital data signal and for coupling a service unit to an analog service signal, for use with a service wire pair installed in walls of a building, the service wire pair concurrently carrying a wired bi-directional digital data signal and an analog service signal carried over a service signal frequency band, using frequency division multiplexing, wherein the wired digital data signal is carried over a frequency band distinct from the service signal frequency band. The outlet has a single enclosure and, within the enclosure: a wiring connector; first and second filters coupled to the wiring connector; a service connector coupled to the first filter and connectable to the service unit for coupling the service unit to the analog service signal; a service wiring modem coupled to the second filter; and a power supply coupled to the service wiring modem.
Abstract:
An outlet (70, 75, 76, 78, 79) for a Local Area Network (LAN), containing an integrated adapter (21, 25) that converts digital data to and from analog video signal. Such an outlet allows using analog video units in a digital data network (80), eliminating the need for a digital video units or external adapter. The outlet may include a hub (31, 41) that allows connecting both an analog video signal via an adapter, as well as retaining the data network connection, which may be accessed by a network jack (73). The invention may also be applied to a telephone line-based data networking system. In such an environment, the data networking circuitry as well as the analog video adapters are integrated into a telephone outlet, providing for regular telephone service, analog video connectivity, and data networking as well. In such a configuration, the outlet would have a standard telephone jack (71), an analog video jack (72) and at least one data networking jack (73). Outlets according to the invention can be used to retrofit existing LAN and in-building telephone wiring, as well as original equipment in new installation.
Abstract:
An addressable outlet for use as part of local area network based on wiring installed in a building, such as telephone, electrical, cable television, dedicated wiring, and the like. The use of such wiring for data communications networks in addition to the wiring's primary usage creates a need for ways of determining the condition of the network and monitoring this information remotely. Network condition includes such factors as continuity of wiring, connector status, connected devices, topology, signal delays, latencies, and routing patterns. Providing basic processing and addressing capabilities within the outlet permits messaging to and from specific individual outlets, thereby allowing inquiries and reports of the condition of the immediate environment of each outlet. In addition, outlets can be configured with sensors to report on voltage, temperature, and other measurable quantities.
Abstract:
An addressable outlet for use as part of local area network based on wiring installed in a building, such as telephone, electrical, cable television, dedicated wiring, and the like. The use of such wiring for data communications networks in addition to the wiring's primary usage creates a need for ways of determining the condition of the network and monitoring this information remotely. Network condition includes such factors as continuity of wiring, connector status, connected devices, topology, signal delays, latencies, and routing patterns. Providing basic processing and addressing capabilities within the outlet permits messaging to and from specific individual outlets, thereby allowing inquiries and reports of the condition of the immediate environment of each outlet. In addition, outlets can be configured with sensors to report on voltage, temperature, and other measurable quantities.
Abstract:
A system and method for measuring a characteristic impedance of a transmission-line comprises transmitting energy to the line, and shortly after measuring the voltage/current involved and thus measuring the equivalent impedance. The measured characteristic impedance may then be used in order to determine the termination value required to minimize reflections. In another embodiment, the proper termination is set or measured by adjusting the termination value to achieve maximum power dissipation in the terminating device. The equivalent characteristic impedance measurement may be used to count the number of metallic conductors connected to a single connection point. This abstract is not intended to limit or construe the scope of the claims.
Abstract:
An adapter for mounting electrical outlet faceplates designed for mounting on rectangular junction boxes in hollow walls onto solid walls with cylindrical cavities and sleeves. Junction box mounting is popular in North America, whereas cavity mounting is popular in Europe and the Middle East. Such an adapter provides universal mounting for specialized faceplates which are designed and intended for junction box mounting. The adapter features clamps for gripping the inner surface of a wall cavity or sleeve and a rectangular plate for mounting an faceplate designed for junction box mounting. The rectangular plate has mounting points with a nominal center-to-center distance of 3¼ inches, corresponding to the requirements of junction box mounting.