摘要:
Apatite glass ceramic which contains at least one glass phase and at least one apatite phase and is characterized in that at least one of the apatite phases is a phosphate- and fluorine-free siliceous oxyapatite phase.
摘要:
The present invention is concerned with a process for the formation of dental restorations from glass-ceramic materials, and the resulting dental restorations. In this invention, a dental restoration is prepared by placing a glass-ceramic material in a heat-pressure deformable crucible. Heat is then applied to the crucible in order to bring the glass-ceramic material to working range at temperatures above its liquidus temperature. The crucible in which the glass-ceramic material is placed has heat-pressure deformation properties which are matched to the working temperature of the glass-ceramic material being heated. The heat deformation properties of the crucible must be such that when the glass-ceramic material in the crucible is in the working range, the crucible is heat-pressure deformable without rupturing. Once the glass-ceramic material is heated to its working temperature, the crucible is brought into contact with a mold having a preformed cavity therein, the cavity being in the shape of the desired dental restoration. As the distance between the heated glass-ceramic material and the mold is decreased, the crucible is deformed to form a seal with the mold, thereby facilitating the injection of the molten glass-ceramic material into the mold cavity. An interactive seal between the crucible and the mold may be provided for. The composite process may be carried out in a vacuum. The resulting dental restoration has superior optical esthetic and strength properties. The invention further includes the heat-pressure deformable crucible. The invention includes dental restorations which are formed from particular lithium-disilicate glass-ceramics. In addition to forming dental restorations by the process of this invention, the dental restorations may be milled.
摘要:
A pressable dental ceramic comprising a mixture of glass and glass-ceramic frits. A refractory filler is also combined with the frits. The dental ceramic contains an amount of leucite less than about 35 percent by weight. Other additives may be included such as pigments, opacifying agents and fluorescing agents. The dental ceramic comprises a cellular-like microstructure comprised of glassy regions surrounded by clusters of leucite crystals distributed around those glassy regions forming a cellular three-dimensional network.
摘要:
The invention relates to a glass-ceramic material for dental restoration having a high crystalline leucite content. The leucite crystals are needle- or rod-shaped, have a thickness of between 0.3 and 1.5 micrometers and are between 7.5 and 20 micrometers in length. Said glass-ceramic material is substantially semi-transparent and contains, in% by weight: between 67 and 71% SiO2, between 8 and 12% Al2O3, between 3 and 5% Na2O, between 8 and 10% K2O, between 1 and 3% CaO, between 0.2 and 2% BaO, between 0.5 and 2% CeO2, between 0.2 and 1% TiO2 and between 0.5 and 2% B2O3. The above glass-ceramic material presents improved fracture strength and offers new indications for the use of full ceramic materials in dental technology, notably metal-free dental restoration.
摘要翻译:本发明涉及一种具有高结晶白云母含量的牙科修复用玻璃陶瓷材料。 白云石晶体是针状或棒状的,其厚度为0.3至1.5微米,长度为7.5至20微米。 所述玻璃 - 陶瓷材料基本上是半透明的,以重量%计含有67至71%的SiO 2,8至12%的Al 2 O 3,3至5%的Na 2 O,8至10%的K 2 O之间,1至3 %CaO,0.2至2%BaO,0.5至2%CeO 2,0.2至1%TiO 2和0.5至2%B 2 O 3之间。 上述玻璃陶瓷材料提供了改善的断裂强度,并提供了在牙科技术中使用全陶瓷材料的新迹象,特别是无金属牙科修复体。
摘要:
A dental restoration comprising a porcelain composition, comprising a glassy matrix and leucite crystallites embedded therein, and having maturing temperatures in the range from about 680.degree. C. to about 870.degree. C. and CTEs in the range from about 12 to about 15, more preferably in the range from about 12.5 to about 14.5, and most preferably in the range from about 13.1 to about 14.5.times.10.sup.-6 /.degree. C. (measured from 25.degree. C. to 470.degree. C.). The porcelain is used in combination with a ceramic core or metal framework. The ceramic core comprises cubic leucite and exhibits maturing temperatures less than about 1200.degree. C. and CTEs in the range of about 12.5 to about 15.0.times.10.sup.-6 /.degree. C. (measured from 25.degree. C. to 500.degree. C.).
摘要:
A living tissue replacement of crystallized glass having bioaffinity and mechanical strength is briefly obtained simply by pressure molding or machining without using a special equipment. A glass material having a softening point below its crystallization temperature and exhibiting viscous flow at temperatures below its melting point is heated at a temperature above its Tg and pressed at the temperature to mold to a desired shape, thereby manufacturing a living tissue replacement such as a dental crown. Molding can be done under a pressure of up to 20 MPa.
摘要:
Porcelain compositions suitable for use as porcelain layers on metal base dental restorations have fusion temperatures of about 800.degree. C. and lower. The compositions may be employed as coatings on titanium and titanium alloy bases since the compositions have thermal expansion values close to those of titanium and its alloys. A method is also provided for forming dental restorations with relatively inexpensive and biocompatible metal bases and low fusing dental porcelains.
摘要:
The present invention relates to an artificial tooth crown composed of a prefabricated coping designed for artificial strength densely sintered ceramic material with powder metallurgical methods. The tooth crown is given the final shape by a veneer material attached to the external surface of the coping by e.g., firing or dental porcelain. The tooth crown can be made in less manufacturing time with an increase in the strength and the accuracy to shape.
摘要:
Means to decrease the effects of polymerization shrinkage, increase stiffness, decrease the coefficient of thermal expansion to a greater extent than previously possible, and improve the durability of composite restorations by use of improved microcrystalline glass inserts. Shaped pieces of assorted sizes within the range of one-half to 10 millimeters are heat treated to produce microcrystallinity in which the crystalline phases, such as for example stuffed beta quartz, beta-eucryptite, beta-spodumene solid solutions, and keatite and/or other phases, give the microcrystalline glass pieces exceptionally low coefficients of thermal expansion and other desirable properties. Compositions and heat treatment conditions are given to provide the insert pieces with the desired translucencies/opacities, colors, and shades, to match a range of those properties found in teeth. Treatment of the inserts with an organofunctional silane with or without an additional resin coating provides for chemical bonding with composite resins. Cavities in teeth are partially filled with unhardened composite material, and microcrystalline glass inserts of appropriate size, shape and appearance are pressed into the cavity so that the insert constitutes as much as possible of the finished restoration. The composite containing the insert is polymerized either by light, chemical, or combined cure mechanisms, and contoured and polished.
摘要:
There is provided a mixture which preferably is a colloidal suspension of finely divided particles of a rare-earth oxide such as cerium oxide in a liquid. The liquid may be all water but also may include other materials such as acetic acid, 1,3-butanediol, methanol. The mixture is used as a wetting and suspending agent for opaque and build-up dental porcelains to primarily overcome the problem of discoloration of the porcelains when used with metal substrates made of dental alloys containing silver, and also to make the porcelains easier to handle and to work with.