Abstract:
A thermal print head and a method of manufacturing it using a thermally stable support mandrel and a plurality of spaced turns of copper-coated resistance wire wrapped on the mandrel. The turns are held on the mandrel by slabs of potting compound retained in under-cut grooves on the mandrel while the connections to the print elements are made by slitting the turns along a longitudinal groove in the mandrel. The copper coating is removed to expose the resistance wire at the desired printing element locations.
Abstract:
A thermal head includes a substrate; a plurality of heat generating portions; a common electrode disposed on the substrate and electrically connected to the plurality of heat generating portions; a plurality of individual electrodes disposed on the substrate and each electrically connected to a corresponding one of the plurality of heat generating portions; a first insulation layer disposed on the heat generating portions, a part of the common electrode, and a part of the individual electrodes; a second insulation layer located adjacent to the first insulation layer and disposed on a part of the individual electrodes; and a static removing layer disposed on the first insulation layer and grounded. The static removing layer includes a first portion disposed on an upper surface of the first insulation layer and a second portion electrically connected to the first portion and disposed on an upper surface of the second insulation layer.
Abstract:
A thermal head avoids a drop in print quality caused by adhesion of printing chaff. A thermal head 39 that presses against thermal paper that moves from one side to the other side and prints by melting dye contained in the thermal paper has a glazed layer 150 that is formed in an area on one part of a ceramic substrate 43 and stores in-flowing heat, and a heating resistor 140 that is located offset to one side from the center of the glazed layer 150, selectively heats the thermal paper S pressed in contact therewith, and melts a dye material contained in the thermal paper. A smooth surface P against which the thermal paper S heated by the heating resistor 140 slides is formed to the other side of the glazed layer 150 from the heating resistor 140.
Abstract:
A thermal head in which battery effect-induced corrosion can be retarded while maintaining excellent anti-static capability in an upper conductive protective film, is provided. The thermal head includes a substrate, a heater element arranged on the surface of the substrate, an electrode layer connected to the heater element, and an upper conductive protective film for covering part of the electrode layer. In the thermal head, between the electrode layer and the upper conductive protective film is interposed a lower conductive protective film which is higher in specific resistance than the upper conductive protective film.
Abstract:
The present invention provides a thermal head in which the surface of a heat insulating layer formed by vapor deposition such as sputtering or the like is polished to decrease the rate of defects such as failure in the resistance values of heating elements formed on the heat insulating layer, disconnection and short-circuit of electrodes, apparent foreign materials, etc., and improve the adhesion of the surface of the heat insulating layer. The thermal head includes a heat insulating layer formed on a radiating substrate by sputtering, and heating elements deposited on the surface of the thermal head, wherein the heat insulating layer has columnar crystals composed of silicon, transition metals and oxygen, the surface of the heat insulating layer is polished, and micro irregularity is formed on the polished surface of the heat insulating layer.
Abstract:
A thermal transfer printing device includes a thermal printing head of the corner-edge type having heating elements disposed on one edge and forming a printing bar. The edge faces a backing roller, is parallel to the axis thereof, and around which an ink ribbon is led directly away from a letter or envelope to be printed. A shell which is provided on the underside of the thermal printing head faces the backing roller. The shell extends immediately up to the printing bar and has a bottom surface with a region adjacent the printing bar at approximately the same height as the printing bar. The thermal printing head including the shell and the backing roller, are adjustable relative to one another. Good ink particle detachment and a relatively low contact force are provided. Disadvantages with regard to soft and sensitive mail can be avoided and the service life of the thermal printing head is prolonged due to a lower contact force. A good print quality is achieved, irrespective of the finish of the letters or envelopes and at a high transport speed of the latter.
Abstract:
The present invention relates to a method of resistive sheet transfer recording using a recording member and an electrode head comprising oppositely aligned electrode pair trains embedded in the insulating support member and also relates to an electrode head use therefor, wherein abrasive wear of the electrode pair by sliding contact of the recording member is optimized in a manner that the resistive sheet usually contacts to a fresh surface of the electrode pair train.The present invention makes it possible to give a high quality image with high recording speed and high sensitivity.
Abstract:
A thermal head for printers, facsimile machines, copying machines, etc., of the thermo-sensitive type or thermo-transfer type, includes a substrate and a resistance-heating element on the substrate. The substrate has a printing surface relative to which an information carrier is caused to slide for printing information on the information carrier. The substrate comprises a material having a thermal conductivity coefficient and a heat capacity per unit volume which are within respectively defined numerical ranges. The resistance-heating element is formed on a thin-walled portion of the substrate, and the printing surface is made integral with a substrate surface which is adjacent to the resistance-heating element.
Abstract:
A thermal recording head having an electrically resistive heat-generating portion formed on an thin-walled end portion of a ceramic substrate and electrically connected to recording and return-circuit electrodes. A reinforcing or heat radiating member is disposed on at least one of opposite sides of the substrate such that a portion of the reinforcing or heat radiating member is located at the thin-walled end portion of the substrate. The thin-walled end portion is preferably partially defined by a shoulder surface which extends from one of opposite major surface of the substrate and terminates in the end face of the thin-walled end portion. The substrate preferably has a thermal conductivity within a range between 0.002 cal.cm/sec.cm.sup.2..degree.C. and 0.03 cal.cm/sec.cm.sup.2..degree.C., while the heat radiating member preferably has a thermal conductivity higher than 0.01 cal.cm/sec.cm.sup.2..degree.C. The conductivity of the substrate is preferably lower than that of the heat radiating member.
Abstract:
A printing head which comprises an insulating substrate and a plurality of printing electrodes for a resistive ribbon type printing apparatus, in which a ribbon composed of a layer of thermal transferable ink and an electrical resistive layer is supplied with an electric current through selected printing electrodes so that the current passes through a portion of the resistive layer to generate Joule heat and melt a portion of the ink layer, and the molten ink is transferred to a paper. The ceramic substrate is provided with a plurality of U-shaped grooves, and each of the printing electrodes is formed in each of the grooves and has a thickness smaller than the depth of the grooves.