Abstract:
The present invention relates to esters of diacids and cellulosic materials and methods for making thereof. The ester has the chemical composition of Formula (I) Formula I where R1, R2, and R3 can be the same or different, and each of which is selected from —H, —COR′, —R′″, or —COR″ COOH, with the proviso that at least one of the R1, R2, or R3 is —COR″ COOH; R′ is an alkyl, alkenyl, alkynyl, or aromatic group; R″ is an alkyl, alkenyl, or alkynyl group having 4 or more carbon atoms (≧C4); and R′″ is an alkyl, alkenyl, alkynyl, polyol, or aromatic group.
Abstract:
The present invention is directed to a method for treating a synthetic, man-made, or natural fiber substrate to create a permanently attached carbohydrate sheath around the fibers of the substrate. Such a treatment gives a composite fibrous substrate that exhibits the most desirable characteristics of the fiber core coupled with the most desirable characteristics of the carbohydrate sheath. It is also possible to apply this technology to individual synthetic fibers or yarns, if desired, before weaving, knitting, stitch-bonding or other method of woven or non-woven substrate formation.
Abstract:
Provided are compounds and methods for modifying a material to change properties of the material, as well as a variety of products obtained using the methods. The material which is modified may be, for example, a carbohydrate, and the modifiable functional groups on the material may be hydroxyls. Multifunctional molecules for use in modifying the surfaces of materials such as textile fibers, yarns and other fabrics made of or, including cotton, wool and nylon, are provided. The multifunctional molecules can include hydrophobic regions and/or hydrophilic regions. The multifunctional molecules also may include binding functional groups that permit either non-covalent or covalent binding to the material being modified, thus permitting the multifunctional molecule to form a non-covalent or covalent coating on the material. The methods and compounds disclosed herein may be used to modify materials to improve properties such as resistance, grease repellency, soil resistance permanent press properties, and quickness of drying.
Abstract:
Provided are compounds and methods for modifying a material to change properties of the material, as well as a variety of products obtained using the methods. In one embodiment, a material comprising one or more modifiable functional groups is reacted with an activated hydrophobic acyl group in the presence of a hindered base, thereby to covalently attach the hydrophobic acyl group to the modifiable functional groups on the material. The material which is modified may be, for example, a carbohydrate, and the modifiable functional groups on the material may be hydroxyls. For example, materials such as cellulose may be modified by reacting it with a acid chloride or acid anhydride including a hydrophobic acyl group, in the presence of a hindered base, such as tripentylamine, to attach the hydrophobic acyl groups to the hydroxyls on the cellulose, thereby to increase the hydrophobicity of the cellulose. The methods and compounds disclosed herein may be used to modify materials to improve properties such as resistance, grease repellency, soil resistance and permanent press properties.
Abstract:
The present invention is directed to a water- and oil repellency-imparting preparation for fibrous and other substrates, the preparation comprising a fluorinated polymer and a tacking monomer, oligomer or polymer containing at least one anhydride functional group or a group capable of forming an anhydride functional group, optionally together with an anhydride-forming catalyst, such as sodium hypophosphite. The preparation can further optionally comprise other additives such as, for example, an extender; a softener; an antioxidant; a surfactant; and/or a plasticizer.
Abstract:
The present invention is directed to a water- and oil repellency-imparting preparation for fibrous and other substrates, the preparation comprising a fluorinated polymer and a tacking monomer, oligomer or polymer containing at least one anhydride functional group or a group capable of forming an anhydride functional group, optionally together with an anhydride-forming catalyst, such as sodium hypophosphite. The preparation can further optionally comprise other additives such as, for example, an extender; a softener; an antioxidant; a surfactant; and/or a plasticizer.
Abstract:
Provided are compounds and methods for modifying a material to change properties of the material, as well as a variety of products obtained using the methods. In one embodiment, a material comprising one or more modifiable functional groups is reacted with an activated hydrophobic acyl group in the presence of a hindered base, thereby to covalently attach the hydrophobic acyl group to the modifiable functional groups on the material. The material which is modified may be, for example, a carbohydrate, and the modifiable functional groups on the material may be hydroxyls. For,example, materials such as cellulose may be modified by reacting it with an acid chloride or acid anhydride including a hydrophobic acyl group, in the presence of a hindered base, such as tripentylamine, to attach the hydrophobic acyl groups to the hydroxyls on the cellulose, thereby to increase the hydrophobicity of the cellulose. The methods and compounds disclosed herein may be used to modify materials to improve properties such as resistance, grease repellency, soil resistance and permanent press properties.