Abstract:
Embodiments of apparatuses and methods for conversion of mercaptans are provided. In one example, an apparatus comprises a vessel that is capable to receive a feed stream that comprises liquid hydrocarbons and the mercaptans. The vessel comprises a catalyst bed section that is capable of contacting the feed stream with a catalyst in the presence of oxygen (O2) and caustic at reaction conditions effective to oxidize the mercaptans and form a caustic-containing, sweetened liquid hydrocarbon-containing stream. A coalescing bed section is capable to coalesce and separate at least a portion of the caustic from the caustic-containing, sweetened liquid hydrocarbon-containing stream for forming a caustic-depleted, sweetened liquid hydrocarbon-containing product stream.
Abstract:
In a catalytic treatment process, mercaptans in sour hydrocarbon are oxidized to disulfide oils using an aqueous treatment solution containing a chelated polyvalent metal catalyst, alkali metal hydroxide, and the alkali metal salt of at least one alcohol in a non-dispersive mixing apparatus wherein an upgraded hydrocarbon containing the disulfide oils is produced.
Abstract:
Methods for extracting a kerogen-based product from subsurface (oil) shale formations. These methods rely on chemically modifying the shale-bound kerogen using a chemical oxidant so as to render it mobile. The oxidant is provided to a formation fluid in contact with the kerogen in the subsurface shale. An alkaline material is also provided to the formation fluid to mobilize organic acids which are produced during oxidation of the kerogen. A mobile kerogen-based product which includes the organic acids is withdrawn from the subsurface shale formation and further processed to isolate the organic acids contained therein.
Abstract:
One exemplary embodiment can be a process for treating a naphtha stream. The process may include providing the naphtha stream to a fractionation zone. The fractionation zone may include a fractionation column producing a first stream having one or more C5− hydrocarbons and a second stream withdrawn at a lower elevation on the fractionation column than the first stream and having one or more C5+ hydrocarbons, and sending at least a portion of the second stream to an aromatics complex for producing at least one of benzene, toluene, and para-xylene.