Abstract:
An electrically conductive metal plate is stamped out to yield a fuse unit including an input terminal and several output terminals. The fuse unit further includes a predetermined locus where fuse element portions are to be formed later. A surface area of the fuse unit including the predetermined locus is then molded with an insulator material. Thereafter, the fuse element portions are formed at the predetermined locus by, for example, stamping. In this manner, the fuse unit can be manufactured easily at low costs, irrespective of the number and electrical capacity of the fuse element portions.
Abstract:
A fuse device is provided with a plurality of separate fuse main bodies in which fuse terminals and fuse terminals are formed at the opposite ends of fusing elements, and a plurality of connection terminals which are members separate from the fuse main bodies. A fuse circuit in which the fusing elements are provided between the connection terminals is formed by directly connecting the fuse terminals of the respective fuse main bodies with the connection terminals. The fusing characteristics of the fusing elements and the strength of the connection terminals can be adjusted without influencing each other.
Abstract:
A fuse box device is provided that includes a fuse box and a fuse unit contained therein. The fuse unit includes an input terminal directly connectable to a battery, several output terminals connectable to a wire harness, and several fuse element portions. One end of the fuse element portions is formed unitarily and in one piece with the input terminal, while the other end of the fuse element portions is formed unitarily and in one piece with the output terminals. The fuse unit is contained in the fuse box such that only the input terminal projects out of the fuse box. In such a construction, the fuse box device requires a reduced number of spare parts, so that production costs can be lowered. Moreover, the fuse box device is better suited to a miniaturization and less susceptible to assembly errors.
Abstract:
A fuse circuit (11) having a plurality of terminals (22, 23) provided on a common joint plate (21) and a fuse circuit (11null) having a plurality of terminals (22null, 23null) provided on a common joint plate (21null) are incorporated into a housing (12), thereby constituting a fuse link assembly (10). The plurality of fuse circuits (11, 11null) are provided with circuit connection portions (27, 27null) which share a power input portion. The fuse circuits (11, 11null) are incorporated into the housing (12) in parallel. As a result, the number of circuits is increased, by means of only enlargement of widthwise direction Y which is easy to increase while enlargement of longitudinal direction X stemming from packaging of circuits is minimized.
Abstract:
A restricting wall (53) confronting an inner face wall (32b) of a first divided body (32) is stood on an inner face wall (33b) of a second divided body (33). The restricting wall (53) is provided with an inclined wall surface (53b) inclined away from the inner face wall (32b) of the first divided body (32). A tipping-resistant rib (54) is provided at both end portions of the restricting wall (53). The first divided body (32) is provided with a flexible arm (51) having a latch (57), and the restricting wall (53) of the second divided body (33) is provided with a notch (52), constituting first locking mechanism. The first divided body (32) is provided with an engaging projection, and the second divided body (33) is provided with an engagement groove (56) engageable with the engaging projection, as second locking mechanism. An engagement groove (56) is provided on an extension wall (36) of the second divided body (33).
Abstract:
A fuse device is provided with a plurality of separate fuse main bodies in which fuse terminals and fuse terminals are formed at the opposite ends of fusing elements, and a plurality of connection terminals which are members separate from the fuse main bodies. A fuse circuit in which the fusing elements are provided between the connection terminals is formed by directly connecting the fuse terminals of the respective fuse main bodies with the connection terminals. The fusing characteristics of the fusing elements and the strength of the connection terminals can be adjusted without influencing each other.
Abstract:
A multielectrode type fuse element manufactured by forming a shallow shaving portion 1 of a definite width in the long fuse material 9 in a longitudinal direction so as to form a thin area 2, punching from portions of the thin area 2 dependently on electrical conduction capacities of fuses so as to form a plurality of blowout portions 3, 3, forming a hook-like extending portion 6 on one side across the thin area 2 at an upper end of an input terminal 4 disposed in a direction perpendicular to the longitudinal direction of the long fuse material 9, forming a plurality of output terminals 5, 5 by punching from the long fuse material on a side of the hook-like extending portion 6 of the input terminal 4 in parallel with the input terminal 4 at an equal pitch, and forming the blowout portions 3, 3 to connect one side of an upper portion of a vertical section of the input terminal 4 and a lower tip of the hook-like extending portion 6 with top end of the plurality of output terminals 5, 5.
Abstract:
A fuse combination in which a group of fused elements are placed on an insulative support. The support is bent into a U-shape carrying the fuse elements with it. Contacts at the ends of the fuse elements extend beyond the corresponding edges of the support and are adapted to be inserted into a socket. To make the combination, the fuse elements are stamped out of a metal plate which has a thin central section. This thin section becomes the fusible portions of the fuse elements. A band at either end of the fuse elements connects them so that they can be handled as a unit. They are then placed on the support, secured thereto, and a preferably transparent cover is placed over the fusible portions.