Abstract:
Method of manufacturing a high voltage power fuse having a dramatically reduced size facilitated by silicated filler material, a formed fuse element geometry, arc barrier materials and single piece terminal fabrications. The method includes: connecting a full-range fuse element assembly including first and second metal strip fuse elements defining a plurality of weak spots therein and being connected in parallel to one another, the first metal strip fuse element configured to uniquely respond to a short circuit current condition and the second metal strip fuse element configured to uniquely respond to an overload current condition and a set of arc barriers at selected locations to surround respective cross sectional portions are disclosed.
Abstract:
A high voltage power fuse having a dramatically reduced size facilitated by silicated filler material, a formed fuse element geometry, arc barrier materials and single piece terminal fabrications. Methods of manufacture are also disclosed.
Abstract:
A fuse including a first housing part and a second housing part that are joined together to define a cavity, a fuse element disposed within the cavity, a first terminal extending from a first end of the fuse element and out of the housing, and a second terminal extending from a second end of the fuse element and out of the housing, the housing having a vent channel extending from an outer surface of the housing to the cavity for allowing vapor to escape from the cavity.
Abstract:
Hollow bodies and hollow body fuses are disclosed. Furthermore, methods to provide hollow bodies and hollow body fuses are disclosed. In one implementation, a hollow body includes a center portion and an end portion. An endcap may be coupled to the end portion. A cavity is formed between an inside surface of the endcap and an outer periphery of the end portion. A fusible element may be disposed within the hollow body, the fusible element may be further disposed within the cavity formed between the inside surface of the endcap and the outer periphery of the end portion, the fusible element traveling a substantially diagonal path through a center of the cavity.
Abstract:
Provided herein are protection devices, such as fuses, including a set of trenches or pockets for retention of solder therein. In some embodiments, a fuse includes a body including a center portion extending between a first and second end portions. The first end portion includes a first trench formed in a first end surface, and the second end portion includes a second trench formed in a second end surface. The fuse may further include a first and second endcaps surrounding respective first and second end portions. The fuse may include a fusible element disposed within a central cavity of the body, the fusible element extending between the first end surface and the second end surface. In some embodiments, solder may be disposed within the first trench and the second trench, wherein the solder is in contact with the fusible element, the first endcap, or the second endcap.
Abstract:
A touch-safe fuse module includes a built-in slidable handle movable between extended and retracted positions relating to a housing of the fuse module. In the extended position, the handle assists with removal of the fuse from a base housing assembly by improving mechanical leverage to apply extraction force to the housing. Fuse modules having high current ratings may be effectively removed by hand without separately provided tools.
Abstract:
A mold structure includes a fixed mold and a movable mold to bury a bus bar having a main body circuit unit with a tuning-fork terminal along with molding of a resin molded product. The fixed mold and the movable mold being joined together are configured to nip a terminal base of the tuning-fork terminal between a terminal base receiving portion of the fixed mold and a terminal base abut portion of the movable mold in a state where the tuning-fork terminal is protruded outside a cavity which is formed by mold main body portions of the fixed mold and the movable mold being joined together and into which resin is injected.
Abstract:
A box-like case for a miniature fuse comprises a first and second plastic assembling members having the same form, each of the assembling members has a base part provided with a pair of first grooves, a side plate part formed as a unitary one-piece structure as the base part to form a square space together with the base part, a wall part provided at an end surface of the side plate part, where the space is exposed, and projecting from the end surface, and a second groove entering inside from the end surface, the wall part and the second groove is formed such that a position of the wall part of one of the first and second assembling members corresponds to a position of the second groove of the other assembling member when the end surfaces of the base parts of the assembling members are opposed.
Abstract:
In large-current fuse unit, a large-current fuse has a pair of terminals interconnected by a fuse element, and a housing receives the large-current fuse therein, and a temperature fuse is mounted within the housing, and is disposed in close proximity to the fuse element. The temperature fuse is melted by heat generated from the fuse element.
Abstract:
A fuse includes a fuse element having a pair of terminal portions interconnected by a fusible portion, pivot pawls provided between the fusible portion and each of the terminal portions, seat surfaces respectively supporting the pivot pawls thereon, thereby holding the fuse element within an insulating housing, and pivotal movement-allowing spaces for allowing two portions of the fuse element, separated from each other when the fusible portion is melted, to be pivotally moved about the pivot pawls inside and outside the insulating housing.