Abstract:
Systems and methods are provided for electroluminescent display elements which are glass supported. These electroluminescent display elements include an EL element or nixel structure that makes use of two rear or substantially same-sided electrodes that are electrically separated by a small gap or other non-conductive (e.g., insulating) material, but that generally cover the rear area of the EL element or nixel laminate. This EL element has a glass plate applied on the other side of the EL element. These EL elements may be made by growing the layers one on top of the other on one side on the glass plate, or a free standing EL element may be made using a ceramic substrate having a front surface onto which the layers are deposited. The back surface of the ceramic substrate may then be ground down to be thinner and the two back electrodes applied to this back surface, after which a glass plate is applied to the other side of the element.
Abstract:
A phosphor paste composition, a manufacturing method thereof, a plasma display panel using the same, and a manufacturing method thereof, which are capable of achieving an improvement in bright room contrast and realizing a highly definite display, are disclosed.
Abstract:
A Plasma Display Panel (PDP) that can be easily manufactured and reduces damages caused by thermal expansion includes: a first substrate and a second substrate arranged opposite to and spaced apart from each other; an electrode sheet arranged between the first substrate and the second substrate and having barrier ribs partitioning discharge cells and pairs of discharge electrodes adapted to cause a discharge in the discharge cells; and fixing members arranged on sides of the electrode sheet and adapted to fix the electrode sheet between the first substrate and the second substrate.
Abstract:
A full color three electrode surface discharge type plasma display device that has fine image elements and is large and has a bright display. The three primary color luminescent areas are arranged in the extending direction of the display electrode pairs in a successive manner and an image element is composed by the three unit luminescent areas defined by these three luminescent areas and address electrodes intersecting these three luminescent areas. Further, phosphors are coated not only on a substrate but also on the side walls of the barriers and on address electrodes. The manufacturing processes and operation methods of the above constructions are also disclosed.
Abstract:
A full color three electrode surface discharge type plasma display device that has fine image elements and is large and has a bright display. The three primary color luminescent areas are arranged in the extending direction of the display electrode pairs in a successive manner and an image element is composed by the three unit luminescent areas defined by these three luminescent areas and address electrodes intersecting these three luminescent areas. Further, phosphors are coated not only on a substrate but also on the side walls of the barriers and on address electrodes. The manufacturing processes and operation methods of the above constructions are also disclosed.
Abstract:
A light-emitting device (52) suitable for a flat-panel cathode-ray tube display contains a light-emissive region (66) formed over a plate (64). The light-emissive region contains a plurality of light-emissive particles (72). Part of the outer surface of each of a group of the light-emissive particles is conformally covered with a group of intensity-enhancement coatings (82 and 84).
Abstract:
A light-emitting device (52) suitable for a flat-panel cathode-ray tube display contains a light-emissive region (66) formed over a plate (64). The light-emissive region contains a plurality of light-emissive particles (72). Part of the outer surface of each light-emissive particle is conformally covered with a coating (74) that provides light reflection or/and gettering.
Abstract:
A full color three electrode surface discharge type plasma display device that has fine image elements and is large and has a bright display. The three primary color luminescent areas are arranged in the extending direction of the display electrode pairs in a successive manner and an image element is composed by the three unit luminescent areas defined by these three luminescent areas and address electrodes intersecting these three luminescent areas. Further, phosphors are coated not only on a substrate but also on the side walls of the barriers and on address electrodes. The manufacturing processes and operation methods of the above constructions are also disclosed.
Abstract:
A color display apparatus comprises a substrate; thin film transistors formed on the substrate, each of the thin film transistors having a source electrode and a drain electrode; electroluminescence elements respectively formed over the thin film transistors and driven by the thin film transistors, each of the electroluminescence elements having a cathode connected to a source electrode or drain electrode of a thin film transistor, a luminous element layer, and an anode electrode sequentially disposed thereover. A color filter or fluorescent color conversion layer acting as a color element is formed on the side of the anode electrode of an electroluminescence element. The same luminous layer material is used for each display pixel to display a color image.
Abstract:
An alternating current thin-film lectroluminescent device includes a plurality of pixel electrodes. An electroluminescent phosphor material is located between a first dielectric layer and a second dielectric layer. A transparent electrode layer, wherein at least a portion 10 of the electroluminescent phosphor material and the first and second dielectric layers are located between the pixel electrodes and the transparent electrode layer. The first dielectric layer is closer to the transparent electrode layer than the second dielectric layer. A non-uniform substantially non-conductive light absorbing material is located between the transparent electrode layer and the first dielectric layer.