Abstract:
A display tube is provided that can improve light emission efficiency without raising a breakdown voltage. The display tube has a tubular vessel defining a discharge gas space and a pair of display electrodes for generating surface discharge along the circumferential surface of the vessel and opposing discharge traversing the inside of the vessel.
Abstract:
Distances between spacers and electron passing apertures in potential regulation plate are regulated. An electron beam apparatus includes a first substrate having a region from which electrons are emitted, a second substrate having a region which is irradiated by the emitted electrons, spacers located between the first substrate and the second substrate for forming an atmospheric pressure resistant structure, and at least one potential regulation plate having aperture portions, through which electrons emitted from the first substrate pass, between the first substrate and the second substrate, wherein the potential regulation plate has recessed portions, to which the spacers fitted on, on one principal surface of the potential regulation plate, and a part of the other principal surface of the potential regulation plate abuts on the first substrate and/or the second substrate in the state in which the spacers are fitted to the recessed portions.
Abstract:
A mercury-free arc tube having a closed glass bulb held between pinch seal portions located at opposite ends of the closed glass bulb and a pair of electrodes provided in the closed glass bulb. The closed glass bulb does not contain mercury (Hg), but contains a main light emitting, a buffer metal halide, and a starting rare gas enclosed in the closed glass bulb. The buffer metal halide includes a halide selected from halides of Ta, Th, Cu, Rb, Nb and Pd. Preferably, at least one of the halides is Ta, Cu, Rb or Nb. The halides serve as a buffer substance and a light emitting substance in substitution for the mercury, and have an ionization potential of about 5 to 8.5 eV and excitation potential of about 4.5 eV or less having emission spectrum in a visible range, and are sealed with the rare gas.
Abstract:
A light emitting device comprising a substrate, a transparent electrode formed on said substrate, a layer of light emitting material provided over the transparent electrode and having at least one corrugated surface, and a further electrode formed over the light emitting material. In a preferred arrangement there is provided a light emitting device comprising a substrate having a corrugated surface, a transparent electrode formed on said corrugated surface, a layer of light emitting material provided over the transparent electrode and a further electrode formed over the light emitting material. In another preferred arrangement there is provided a light emitting device comprising a substrate, a transparent electrode formed over the substrate, a conductive polymer layer formed over the transparent electrode and having a corrugated surface opposite to a surface facing the transparent electrode, a light emitting material in contact with said corrugated surface and a further electrode formed over the light emitting material. The invention also provides a method of manufacturing a light emitting device comprising the steps of providing a substrate, forming a transparent electrode on said substrate, providing a layer of light emitting material over the transparent electrode, arranging for the light emitting surface to have at least one corrugated surface, and forming a further electrode over the light emitting material. Very preferably the light emitting material is an organic material.
Abstract:
An electron source forming substrate wherein an insulating material film is disposed on the surface of the substrate at which surface an electron-emitting device is arranged. The insulating material film contains a plurality of metallic oxide particles having an average particle size within the range of 6 nm to 60 nm as expressed in a median value, and suppresses undesirable diffusion of Na from the substrate, thereby makes stable an electron-emitting characteristics, without an adverse effect due to the Na diffusion, even elapsing longer time.
Abstract:
A light-emitting device (52) suitable for a flat-panel cathode-ray tube display contains a light-emissive region (66) formed over a plate (64). The light-emissive region contains a plurality of light-emissive particles (72). Part of the outer surface of each light-emissive particle is conformally covered with a coating (74) that provides light reflection or/and gettering.
Abstract:
A graphite nanofiber material herein provided has a cylindrical structure in which graphene sheets each having an ice-cream cone-like shape whose tip is cut off are put in layers through catalytic metal particles; or a structure in which small pieces of graphene sheets having a shape adapted for the facial shape of a catalytic metal particle are put on top of each other through the catalytic metal particles. The catalytic metal comprises Fe, Co or an alloy including at least one of these metals. The material can be used for producing an electron-emitting source, a display element, which is designed in such a manner that only a desired portion of a luminous body emits light, a negative electrode carbonaceous material for batteries and a lithium ion secondary battery. The electron-emitting source (a cold cathode ray source) has a high electron emission density and an ability of emitting electrons at a low electric field, which have never or less been attained by the carbon nanotube. The negative electrode carbonaceous material for batteries has a high quantity of doped lithium and ensures high charging and discharging efficiencies. Moreover, the lithium ion secondary battery has a sufficiently long cycle life, a fast charging ability and high charging and discharging capacities.
Abstract:
A spacer on which static electricity is restricted and an electron beam apparatus in which the spacer is provided. In the electron beam apparatus comprising an electron source provided with electron emission devices, a face plate provided with anodes and spacers installed between the electron source and the face plate, unevenness is formed on the surface of the spacer substrate, and further a thin film which has a smaller thickness than a roughness. This makes possible the restriction of incident angle multiplication coefficient for the primary electrons whose energy is lower than the second cross-point energy of a resistive film. The electron beam apparatus provided with the above spacer is excellent in display definition and long-term reliability since the displacement of light emission points and the creeping discharge accompanying the static electricity can be restricted due to the spacer.
Abstract:
A cathode shield for a gas discharge lamp having a predetermined size hole proportional to the diameter of a cup and the diameter of the glass envelope of the gas discharge lamp. A conductive cup is placed around an electrode or a filament. The cup is covered with an insulator material having a hole therein. The diameter of the hole in the cover has a proportional relationship to the diameter of the envelope of the lamp and the diameter of the cup. The ratio of the diameter of the envelope and the hole in the cover ranges between 3.5 and 4.5. The ratio of the diameter of the cup and the hole in the cover ranges between 2.0 and 3.0. It has been determined that these ratios improve current loads without changing discharge characteristics. Additionally, lower temperature operation and starting is facilitated with increased service life. The cathode shield is particularly applicable to germicidal lamps used in water treatment due to the cooler starting and operating temperatures required.
Abstract:
A light-emitting body of the present invention includes an anode and a cathode at least partly facing the anode with the intermediary of a light-emitting material layer. An auxiliary electrode is formed, via an insulation layer, on the surface of the light-emitting body opposite to the surface where the anode faces the cathode via the light-emitting material layer. The cathode can be formed of a material that corrodes little. The light-emitting body therefore extends the life of a light-emitting device and therefore the life of a light-emitting display.