Abstract:
An apparatus for reading an image comprises an original mounting table for mounting an original, a first carriage which has a light source for irradiating light to the original and an optical system for guiding original-image light reflected from the original, and which moves along the original mounting table, a lens unit having a lens into which the original-image light enters and placed immediately under a passage on which the first carriage moves, a CCD assembly for receiving the original-image light passed through the lens and reading an image corresponding to the original-image light, a lens bracket cover having a bracket portion to which the CCD assembly is attached and a cover portion for covering the lens unit, and a lens base having the bracket portion of the lens bracket cover attached thereto, for supporting the lens unit.
Abstract:
Provided is a camera support structure for a video presenter which allows rotation of a camera connected to a base of the video presenter and supports the camera in an accurate location. The camera support structure of a video presenter includes a support arm, one end of which is joined with the base, an rotation guide member that includes an annular member having a ring shape in which a plurality of ball receiving holes are formed on one end part of the support arm, biasing elements that includes a plurality of rotation-fixing balls which are inserted into the ball receiving holes from an inner side of the annular member and a portion of the balls are elastically protruded to an outer side of the annular member, a annular plate element, the rotation of which can be prevented by fixing by the rotation-fixing balls and disposed to be able to be rotated on an outer side of the annular member of the rotation guide member, and a camera head that rotates with the annular plate element by coupling with the annular plate element and fixes a camera head having a camera.
Abstract:
An image reading apparatus includes a stage for placing a specimen. The stage moves in first directions between a setting position where the specimen is placed and removed and a reading position for reading the specimen. The image reading apparatus also includes a light source for irradiating light onto the specimen on the stage, a photoelectric conversion device having a line shape for photo-electrically converting the light reflected from the specimen, an optical device for guiding the light from the specimen to the photoelectric conversion device, a carriage mounting the optical device, and an apparatus frame for movably supporting the stage and the carriage. The carriage moves along the stage in second directions substantially same as the first direction.
Abstract:
An image reading apparatus includes a transport path through which a medium to be read is transported, an image reading section disposed in a middle of the transport path and reading an image formed on the medium to be read that is transported along the transport path, a cover member that covers the image reading section and the transport path, a pressing member in which another end is supported by the cover member to cause one end to be swingable, thereby pressing the transported medium to be read against the image reading section, a circuit board member which is disposed on the cover member, and on which a grounded electric circuit is formed, and a conductive member which electrically connects the pressing member to the electric circuit formed on the circuit board member to ground the pressing member through the electric circuit.
Abstract:
A laser emitter including: a first lens barrel portion for holding a first laser element; a second lens barrel portion for holding a second laser element whose optical axis is slanted with respect to an optical axis of the first lens barrel portion, the second lens barrel portion being provided as one unit with the first lens barrel portion; a first lens supporting portion provided at the tip of the first lens barrel portion to support a first collimator lens; and a second lens supporting portion provided at the tip of the second lens barrel portion to support a second collimator lens, in which the first and second lens supporting portions are capable of supporting the collimator lenses with an adjustment range stretching in an optical axis direction, and the first and second collimator lenses are fixed and supported at positions adjusted within the adjustment range.
Abstract:
A combination of an optical module and a transmitting and carrying structure includes an optical module, at least one carrying seat, and two rollers. The at least one carrying seat is combined with the optical module, for mounting the two rollers. The two rollers are located at the two opposite sides of the optical module. The two opposite sides of the optical module are perpendicular to the movement direction of the optical module. Thus, the at least one carrying seat and the two rollers are used to support and transmit the optical module, so that the optical module may be well balanced. In addition, the assembly height and the cost of fabrication are reduced.
Abstract:
The present invention provides a locking apparatus for switching between a lock state and an unlock state of a sliding device in a system. The system has a plug and a socket. The sliding device has a shaft. The locking apparatus has a sliding member, a spring, a hook, and a connecting member. The hook has an end part and a bending portion for locking the shaft. When the plug is plugged into the socket, the locking apparatus unlocks the shaft. When the plug is pulled out from the socket, the locking apparatus locks the shaft.
Abstract:
A flatbed-type digital scanner has a vertically oriented scanning surface. Because the size of the scanner in a dimension normal to the scanning surface is significantly less than the length or width of the scanning surface, the scanner is taller than it is wide, and consumes less space on a desktop than conventional flatbed scanners. Preferably, an outer cover and an intermediate transparent cover are attached to the scanner by a hinge near the bottom. The inner surface of the outer cover has a relatively high coefficient of friction, to prevent slippage of documents. To scan a document, the outer cover is pulled down to a horizontal position, and the document is placed face-up on the outer cover, and the intermediate cover is lowered into position next to the outer cover, so that the scanned document is held in place between the two covers. The two covers are then rotated together to position the document next to the scanning surface for scanning. A latch mechanism holds the covers in place during rotation. The scanner may optionally be wall mounted or mounted in a conventional orientation. This digital scanner reduces consumption of critical desktop area. An additional advantage is that it is easier to align multiple small documents, such as photographs, because these are placed in a face-up position on the horizontally positioned cover.
Abstract:
An apparatus for obtaining data from a document at point of presentment. The document has a predetermined width, and the apparatus has a frame, a drive mechanism mounted on the frame, and sensors. The drive mechanism is adapted to move the document along a document path in the apparatus between a home position, at which the document is inserted into the apparatus, and an exit position, at which the document is removable from the apparatus. The drive mechanism includes a roller rotatable about a roller axis for engaging a contact portion of the document extending along the width thereof. The roller has a substantially smooth surface for supporting the contact portion. The sensors are for obtaining document data from the contact portion of the document.
Abstract:
A scanning optical system is configured to include a light source, an anamorphic optical element, a polygonal mirror, and an imaging optical system. The imaging optical system has a scanning lens including a first lens provided on a polygonal mirror side and a second lens provided on a surface side, and a compensation lens provided on the surface side with respect to the scanning lens, the compensation lens compensating for curvature of field. The scanning lens includes at least one convex surface that has a toric surface having a stronger power in the auxiliary scanning direction than in the main scanning direction. One surface of the compensation lens has an anamorphic aspherical surface, which is a surface whose radius of curvature in the auxiliary scanning direction at a point spaced from the optical axis thereof is determined independently from a cross-sectional shape thereof along the main scanning direction.