Abstract:
The method for producing a photovoltaic cell includes applying, on a partial region of one surface side of a semiconductor substrate, a first n-type diffusion layer forming composition including an n-type impurity-containing glass powder and a dispersion medium; applying, on at least a region other than the partial region on the surface of the semiconductor substrate, a second n-type diffusion layer forming composition which includes an n-type impurity-containing glass powder and a dispersion medium and in which a concentration of the n-type impurity is lower than that of the first n-type diffusion layer forming composition, where the first n-type diffusion layer forming composition is applied; heat-treating the semiconductor substrate on which the first n-type diffusion layer forming composition and the second n-type diffusion layer forming composition are applied to form an n-type diffusion layer; and forming an electrode on the partial region.
Abstract:
A light-emitting element having at least a light-emitting region arranged between a pair of electrodes is provided, in which the light-emitting region contains either (A) a light-emitting material, a compound capable of sustaining the charge transport, and a heavy metal as a mixture, or (B) a compound that is capable of sustaining the charge transport and that includes both of a portion for contributing to the charge transport and a portion for contributing to the light emission within the compound, and a heavy metal as a mixture. A method for producing the light-emitting element, and a display device in which a plurality of the light-emitting elements are used, are provided also. With the light-emitting element of the present invention, it is possible to provide an organic thin film electroluminescent element that has a high emission efficiency, whose materials are easy to synthesize as compared with a heavy metal complex-doped element that has been studied widely in recent years, that has a small concentration quenching, and that is stable and uniform. Therefore, the light-emitting element of the present invention is applicable as a light source for use in a flat-panel-type self-luminous display device and for other various purposes such as communication and illumination.
Abstract:
An apparatus for reading an image comprises an original mounting table for mounting an original, a first carriage which has a light source for irradiating light to the original and an optical system for guiding original-image light reflected from the original, and which moves along the original mounting table, a lens unit having a lens into which the original-image light enters and placed immediately under a passage on which the first carriage moves, a CCD assembly for receiving the original-image light passed through the lens and reading an image corresponding to the original-image light, a lens bracket cover having a bracket portion to which the CCD assembly is attached and a cover portion for covering the lens unit, and a lens base having the bracket portion of the lens bracket cover attached thereto, for supporting the lens unit.
Abstract:
A light-emitting element is provided having a layered structure composed of at least a light-emitting layer having a light-emitting region and a reflective layer for reflecting light emitted from the light-emitting region. Light emitted from the light-emitting region is extracted from a light-extracting surface distanced from the light-emitting region. A light-scattering portion is present in a part of the reflective layer.
Abstract:
An imaging apparatus includes an imaging unit operable to capture a subject image to generate image data, a controller operable to calculate a target exposure value based on the image data and control exposure based on a first shooting parameter set by a user to obtain the target exposure value, and a display unit operable to provide a display. The controller calculates a first suitable range which is a range of the first shooting parameter for obtaining the target exposure value, and calculates a second shooting parameter based on the target exposure value and the first shooting parameter set by the user. The display unit displays exposure guide information including the first shooting parameter set by the user, information representing the first suitable range, and the calculated second shooting parameter.
Abstract:
A remote control system which controls plural devices connected to a bus, and which includes: a set top box (2) that is operated by a controller (4); and a DVD player (1) that transmits, to the plural devices connected to the bus, a first command indicating that the DVD player (1) is currently outputting video. Upon receiving the first command, the set top box (2) transmits, to the DVD player (1) via the bus, a second command corresponding to an operating signal transmitted from the controller, and the DVD player (1) receives the second signal and executes a process corresponding to the second command.
Abstract:
A light-emitting element is provided having a layered structure composed of at least a light-emitting layer having a light-emitting region and a reflective layer for reflecting light emitted from the light-emitting region. Light emitted from the light-emitting region is extracted from a light-extracting surface distanced from the light-emitting region. A light-scattering portion is present in a part of the reflective layer.
Abstract:
The present invention provides a method and an apparatus for analyzing nitrogen in a gas, in which the concentration of nitrogen can be continuously measured with good sensitivity without wasting a sample gas. At least one wavelength for measuring a concentration of nitrogen according to the intensity of a light generated by discharge, is selected from a group consisting of 215±2 nm, 226±2 nm, 238±2 nm, 242±2 nm, 246±1 nm, 256±2 nm, 260±2 nm, 266±2 nm, 271±1 nm, 276±4 nm, 285±2 nm, 294±1 nm, and 300±2 nm.
Abstract:
There are provided a method and an apparatus capable of accurately analyzing impurity component having high adsorptivity or reactivity in a short time. Prior to starting measurement, predetermined amount of sample gas is introduced into analyzing system in plural times with predetermined time interval and then, analysis of impurities is started.
Abstract:
The method for producing a photovoltaic cell includes applying an n-type diffusion layer forming composition including an n-type impurity-containing glass powder and a dispersion medium onto a first region on one surface side of a semiconductor substrate; applying a p-type diffusion layer forming composition including a p-type impurity-containing glass powder and a dispersion medium onto a second region other than the first region on the surface of the semiconductor substrate where the first region is provided; a thermal diffusion process in which an n-type diffusion layer and a p-type diffusion layer are formed by heat-treating the semiconductor substrate onto which the n-type diffusion layer forming composition and the p-type diffusion layer forming composition are applied; and forming an electrode on each of the first region where the n-type diffusion layer is formed and the second region where the p-type diffusion layer is formed, respectively.