摘要:
High-current, compact, flexible conductors containing high temperature superconducting (HTS) tapes and methods for making the same are described. The HTS tapes are arranged into a stack, a plurality of stacks are arranged to form a superstructure, and the superstructure is twisted about the cable axis to obtain a HTS cable. The HTS cables of the invention can be utilized in numerous applications such as cables employed to generate magnetic fields for degaussing and high current electric power transmission or distribution applications.
摘要:
High-current, compact, flexible conductors containing high temperature superconducting (HTS) tapes and methods for making the same are described. The HTS tapes are arranged into a stack, a plurality of stacks are arranged to form a superstructure, and the superstructure is twisted about the cable axis to obtain a HTS cable. The HTS cables of the invention can be utilized in numerous applications such as cables employed to generate magnetic fields for degaussing and high current electric power transmission or distribution applications.
摘要:
A precursor for manufacturing a Nb3Sn superconducting wire according to the present invention includes a mono-element wire including a Sn or Sn-based alloy core disposed at the, a Cu or Cu-based alloy matrix and a plurality of Nb or Nb-based alloy filaments surrounding the Sn or Sn-based alloy core, and a diffusion barrier layer and a stabilizing copper layer surrounding the Cu or Cu-based alloy matrix. In a final shape after a reduction process, the average diameter of the Nb or Nb-based alloy filaments is set to 5 μm to 30 μm, and the average distance between the Sn or Sn-based alloy core and the Nb or Nb-based alloy filaments nearest the Sn or Sn-based alloy core is set to 100 μm or less.
摘要:
The present invention is configured such that, in a low AC loss oxide superconductor constituted by providing an oxide superconducting layer 6 on a substrate 1, said oxide superconducting layer 6 is separated into a plurality of filament conductors 2 in parallel to the lengthwise direction of said substrate 1 by dividing grooves 3 plurally formed in the widthwise direction of said substrate, and a high-resistance oxide 8 is formed in said dividing grooves 3. Because of the invention, it is possible to increase the insulation properties of individually divided mated filament conductors, and to obtain an oxide superconductor that has low AC loss.
摘要:
The present invention provides a terminal structure of a superconducting cable including a cable core having a superconducting shield layer and an electrical insulation layer. The superconducting shield layer has a radially outer portion provided with by a connection electrode and the superconducting shield layer and the connection electrode are connected together with a low melting solder. The connection electrode has a ground wire connected thereto to ground the superconducting shield layer. For a multiphase cable including a plurality of cable cores, connection electrodes are linked by a conductive coupling member to short circuit superconducting shield layers. The superconducting shield layer can be grounded without impaired insulating property of the electrical insulation layer.
摘要:
In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.
摘要:
Superconducting cable (1) comprising: a) a layer (20) of tapes comprising superconducting material, b) a tubular element (6) for supporting said layer (20) of tapes comprising superconducting material, c) a cooling circuit, adapted to cool the superconducting material to a working temperature not higher than its critical temperature, characterized in that said tubular element (6) is composite and comprises a predetermined amount of a first material having a first thermal expansion coefficient and a second material having a thermal expansion coefficient higher than that of said first material, said thermal expansion coefficients and said amounts of said first and second material being predetermined in such a way that said tubular element has an overall thermal shrinkage between the room temperature and said working temperature of the cable such as to cause a deformation of said tapes comprising superconducting material lower than the critical deformation of the same tapes.
摘要:
Superconducting cable (1) comprising: a) a layer (20) of tapes comprising superconducting material, b) a tubular element (6) for supporting said layer (20) of tapes comprising superconducting material, c) a cooling circuit, adapted to cool the superconducting material to a working temperature not higher than its critical temperature, characterized in that said tubular element (6) is composite and comprises a predetermined amount of a first material having a first thermal expansion coefficient and a second material having a thermal expansion coefficient higher than that of said first material, said thermal expansion coefficients and said amounts of said first and second material being predetermined in such a way that said tubular element has an overall thermal shrinkage between the room temperature and said working temperature of the cable such as to cause a deformation of said tapes comprising superconducting material lower than the critical deformation of the same tapes.
摘要:
An a.c. cable has at least one cable core (15) with two concentric conductor arrangements (8, 9) used as forward and return conductors. At least one of the conductor arrangements (8, 9) contains a plurality of conductor layers (L.sub.j and L.sub.j ') made of stranded normally conducting or superconducting individual conductors (3). The individual conductors preferably feature high-T.sub.c superconducting materials. The wire angles (.alpha..sub.j, .alpha..sub.j ') in the individual conductor layers (L.sub.j and L.sub.j ') should be selected so as to minimize losses. A calculation formula for the wire angles (.alpha..sub.j, .alpha..sub.j ') is given for this purpose.