Abstract:
The present invention is directed to a radiographic apparatus that utilizes a single integral housing for providing an evacuated envelope for an anode and cathode assembly. The integral housing provides sufficient radiation blocking and heat transfer characteristics such that an additional external housing is not required. The integral housing is air cooled, and thus does not utilize any coolant. In addition, the integral housing is insulated with a dielectric gel material, which electrically insulates the integral housing and its components, and also limits the amount of noise emitted from the housing during operation.
Abstract:
The present invention relates to a rotor shaft and rotor body assembly in an x-ray device, and it method of manufacture, that resists the formation of cracks in the braze joint due to the elimination of horizontal shear planes therein. The inventive structure also comprises an enlarged proximal end of the rotor shaft and an inventive assembly method that prevents the rotor shaft from de-coupling from the rotor body should the braze material entirely fail during field use.
Abstract:
An x-ray tube for emitting x-rays which includes an anode assembly and a cathode assembly is disclosed herein. The x-ray tube includes a vacuum vessel, an anode assembly disposed in the vacuum vessel and including a target, a cathode assembly disposed in the vacuum vessel at a distance from the anode assembly, and a heat pipe is supported relative to the anode assembly. The cathode assembly is configured to emit electrons which hit the target of the anode assembly and produce x-rays. The heat pipe transfers thermal energy away from the target through the vacuum vessel. The heat pipe provides for greater thermal transfer down the bearing shaft of the anode assembly, thereby providing greater cooling of the anode assembly.
Abstract:
An x-ray tube for emitting x-rays which includes an anode and a cathode is disclosed herein. The x-ray tube includes a housing, an anode disposed in the housing and including a target, a cathode disposed in the housing at a distance from the anode, and a heat pipe thermally coupled to the cathode and extending away from the electron emitter. The cathode includes an electron emitter which is configured to emit electrons which hit the target of the anode and produce x-rays. The heat pipe provides transfer of thermal energy away from the electron emitter and into a heat sink.
Abstract:
In order to enhance the dissipation of heat, a metal structure is provided between an anode target layer and a support for the anode target layer in an X-ray tube. In the case of a target transmission tube, notably the dissipation of heat to the window wall is enhanced, whereas in the case of an anode target layer provided on a suitably thermally conductive anode body, the dissipation of heat to said body is enhanced.
Abstract:
Provided are a high-quality and high-reliability rotary anode target for X-ray tubes, of which the mechanical strength at high temperatures is increased and which is applicable not only to low-speed rotation (at least 3,000 rpm) but also even to high-speed rotation at high temperatures, and also a method for producing it. The rotary anode has a two-layered structure to be formed by laminating an Mo alloy substrate that comprises from 0.2% by weight to 1.5% by weight of TiC with the balance of substantially Mo, and an X-ray generating layer of a W—Re alloy that overlies the substrate.
Abstract:
An x-ray radiator has a rotary-bulb tube, whose vacuum enclosure rotates inside a radiator housing, which is filled with a liquid cooling medium, and a cooling medium conducting body is arranged between the vacuum enclosure and the radiator housing, at a distance from both of these. The cooling medium conducting body produces a flow of the cooling medium along the vacuum enclosure in the inner gap and a return flow of the cooling medium along the radiator housing in the outer gap, promoted by the rotation of the rotary-bulb tube.
Abstract:
A bearing assembly includes: an axial rotatable structure including a cylindrical rotor assembly (including a motor rotor and a plurality of magnetic bearing rotors); a cylindrical stationary shaft; rotating element bearings mechanically coupling the rotatable structure and the stationary shaft; and a cylindrical stator assembly including a motor stator and a plurality of magnetic bearing stators. The magnetic bearing stators and the magnetic bearing rotors forming magnetic bearings magnetically coupling the rotor and stator assemblies. Command feedforward of electrical current can be provided to at least some of the bearings to achieve appropriate radial forces for respective operating trajectories.
Abstract:
A rotary component support system for positioning and securing an anode of x-ray tube. The rotary component support system includes a shaft, to which the anode is indirectly mounted, that includes a tapered end and defines a threaded hole. The tapered end of the shaft is engaged by a tapered cavity defined by a mounting piece that is disposed in an aperture defined by the vacuum enclosure of the x-ray tube. The mounting piece defines a hole through which a bolt passes. The bolt engages the threaded hole defined by the support shaft so that as the bolt is tightened, the tapered end of the support shaft is drawn into the tapered cavity of the mounting piece. Due to the tapered geometries, the support shaft self-aligns itself with respect to the mounting piece. A weld at the interface between the bolt and the mounting piece seals the vacuum enclosure.
Abstract:
An x-ray tube (1) includes a heat shield (130) which intercepts heat radiating from an anode (10), thereby reducing the temperature of a bearing assembly (62). The heat shield includes outer and inner concentric cylinders (132, 134) spaced from each other by a vacuum gap (138). The heat shield and a stationary portion (114) of the bearing assembly are both connected to a cold plate (150) so that heat is not conducted from the cylinders to the bearing assembly but is instead carried away by the cold plate to the surrounding cooling oil.