Abstract:
Process for treating and receptacle for confining an anode, wherein the anode is placed in a confining receptacle that envelops this anode while leaving uncovered an annular coating zone of a frontal face of this anode, which is defined by an aperture of the receptacle; in order to carry out a least one operation for treating said annular coating zone, implementing at least one treating gas.
Abstract:
A method of manufacturing a target for the generation of radiation of photons, protons or electrons by means of a laser, including: forming a support including first and second surfaces connected by openings, and forming in an enclosure a layer of material on the first surface by protecting the first surface with a protection element, injecting into the enclosure a gas of filling material, adjusting the pressure in the enclosure and the temperature of the support to form plugs of material in the openings of the support, and maintaining the temperature of the support and the pressure in the enclosure at values to maintain the plugs, followed by withdrawing the protection element from the first surface, and forming a layer of metallic material on the first surface of the support and on the plugs. The pressure and support temperature are then modified to remove the plugs.
Abstract:
A system and method for x-ray tube components is disclosed. The method of fabricating an x-ray tube component includes providing a powder into an electrically conductive die constructed to have a cavity shaped as the x-ray tube component being fabricated and simultaneously applying a mechanical pressure and an electric field to the die so as to cause sintering of the powder and thereby fabricate the x-ray tube component, wherein the electric field applied to the die directly passes through the die to the powder, so as to generate heat internally within the powder responsive to the applied electric field.
Abstract:
A method of manufacturing a target for the generation of radiation of photons, protons or electrons by means of a laser, including: forming a support including first and second surfaces connected by openings, and forming in an enclosure a layer of material on the first surface by protecting the first surface with a protection element, injecting into the enclosure a gas of filling material, adjusting the pressure in the enclosure and the temperature of the support to form plugs of material in the openings of the support, and maintaining the temperature of the support and the pressure in the enclosure at values to maintain the plugs, followed by withdrawing the protection clement from the first surface, and forming a layer of metallic material on the first surface of the support and on the plugs. The pressure and support temperature are then modified to remove the plugs.
Abstract:
A method and an apparatus for locally applying material to the surface of an anode of an X-ray source as well as a corresponding anode is presented. Anode material such as a repair material for filling a recess (121) in an X-ray emitting surface (115) is applied to the X-ray emitting surface of an anode (101). The location where such material is to be applied may be detected using a laser beam (133). The applied repair material including particles (41) of anode material such as tungsten, rhenium or molybdenum, is subsequently locally sintered using a high-energy laser beam (151). The sintered material may then be melted using a high-energy electron beam (163). Using such method, a damaged surface of an anode may be locally repaired. Alternatively, structures of different anode materials or of protrusions having different levels can be provided on the X-ray emitting surface (115) in order to selectively manipulate the X-ray emitting characteristics of the anode (101).
Abstract:
Provided are a high-quality and high-reliability rotary anode target for X-ray tubes, of which the mechanical strength at high temperatures is increased and which is applicable not only to low-speed rotation (at least 3,000 rpm) but also even to high-speed rotation at high temperatures, and also a method for producing it. The rotary anode has a two-layered structure to be formed by laminating an Mo alloy substrate that comprises from 0.2% by weight to 1.5% by weight of TiC with the balance of substantially Mo, and an X-ray generating layer of a W—Re alloy that overlies the substrate.
Abstract:
An X-ray inspection system that can simply and automatically perform aging without separately preparing a shutter moving member including a dedicated motor or a guide member for aging is provided. When power is supplied, a stage moves in X and Y directions by activating a stage moving mechanism, and an X-ray source stops at an aging position below an X-ray shielding plate disposed beside a support plate on the stage. In this state, aging is started. When the aging is ended, an input of an imaging instruction for X-ray imaging is waited for.
Abstract:
A rotary X-ray anode has a support body and a focal track formed on the support body. The support body and the focal track are produced as a composite by powder metallurgy. The support body is formed from molybdenum or a molybdenum-based alloy and the focal track is formed from tungsten or a tungsten-based alloy. Here, in the conclusively heat-treated rotary X-ray anode, at least one portion of the focal track is located in a non-recrystallized and/or in a partially recrystallized structure.
Abstract:
A rotating anode includes a focal track that has a microstructure on a surface of the focal track. The microstructure is produced using deep reactive ion etching.
Abstract:
A rotary anode for a rotary anode X-ray tube has an anode disc with a supporting portion. A focal track is located in the vicinity of an outer diameter of the anode disc. The supporting portion has inhomogeneous material properties along a radial coordinate of the anode disc to provide a high mechanical load capacity in the area of an inner diameter of the anode disc and a high thermal load capacity at the focal track. These measures provide for a rotary anode for a rotary anode X-ray tube that meets the extreme thermal and mechanical loads during operation. Further, a method for manufacturing such a rotary anode is described as well.