Abstract:
An electric sewing machine driving apparatus includes a clutch coil of an electromagnetic clutch for transmitting a driving motor torque to a sewing machine, a brake coil of an electromagnetic brake for braking the sewing machine, a needle position signal generator for generating a signal indicative of a position where a needle of the sewing machine is to stop, a DC power supply for energizing the clutch coil and the brake coil, voltage generating means for generating a DC voltage higher than the supply voltage of the DC power supply and a capacitor disposed to be charged by the voltage generated by the voltage generating means, whereby an electric charge stored in the capacitor discharges through the brake coil in response to the needle position signal from the needle position signal generator, thereby improving the needle positioning accuracy of the sewing machine.
Abstract:
A control arrangement is described for dynamically braking a vehicle driven by an electric motor having a single field winding. The control arrangement comprises means for controlling the supply of power to the motor, a permanent magnet generator for mechanically coupling to the motor, and circuit closure means arranged to complete a circuit between the output of the generator and the field winding to dynamically brake the motor when the motor is de-energized by the controlling means.
Abstract:
In a protective device for controlling a sewing machine at a predetermined number of revolutions by a motor equipped with a clutch mechanism and a brake mechanism which are electromagnetically actuated, a protective device is constructed comprising a detector to detect substantially the rotation of the driving shaft of the sewing machine, and a detector to detect the voltage of a control circuit with an output from the detectors being compared with a reference value representative of a predetermined driving state for the sewing machine, so that when the output of the detector becomes lower than the reference value, the operation of the control circuit is terminated, whereby safe operation is provided for the apparatus and an operator.
Abstract:
A circuit which does not require mechanical relays is disclosed using silicon-controlled rectifiers (SCR''s) for controlling manually and/or automatically the starting and stopping of a clutch-brake motor having an electromagnetically actuated clutch and brake. Each clutch turnoff brake winding is connected to a source of full wave rectified AC voltage through its own SCR and selective turnoff is effected by capacitor commutation. Momentary overexcitation of both windings is provided by alternative initial discharge therethrough of energy previously stored in respective capacitors. These capacitors are charged through separate individual SCR''s from an AC voltage of a value higher than the normal DC energizing voltage used for continuously exciting the coils. The four SCR''s are turned on in pairs, one SCR of each pair closes a circuit connecting the respective winding to the previously charged capacitor and thereafter to the normal DC energizing bus. Diode gates prevent adverse interaction between the capacitors and the DC bus and provide properly timed energy flow from the DC bus to the winding as soon as the capacitor voltage drops to a value slightly below the bus voltage so that there is no discontinuity in the winding excitation. The trigger pulse which turns on one SCR to energize one winding also turns on the other SCR of the pair, which latter SCR connects the capacitor for charging or storing energy which is later released for initially energizing the other winding. A no-voltage release circuit employs a unijunction transistor (UJT) as a relaxation oscillator connected to a DC supply having a large capacitor. This oscillator provides triggering pulses to the gate of the SCR which controls excitation of the brake winding. Normally, however, with full line voltage, a transistor base-biased to saturation, has its emitter-collector circuit connected across the timing capacitor of the UJT oscillator, thus normally shorting the capacitor and preventing oscillation. Upon failure of line voltage, the transistor turns off due to loss of base bias and the timing capacitor charges from the energy in the large capacitor, and the oscillator supplies a triggering pulse to the SCR for energizing the brake coil. The voltage of the previously charged capacitor now connected to the brake winding will, even in the absence of line voltage, supply a high impulse of energy to the brake coil to bring the load quickly to standstill.
Abstract:
A clutch motor for a sewing machine comprising a flywheel on the motor shaft and two concentric clutch wheels connected with one another through reducing gearing and alternatively engageable with the same face of the flywheel. One of the clutch wheels being on an output shaft which is thereby driven at a speed dependent on which clutch wheel is engaged. A lever arrangement makes it possible to stop the sewing machine selectively in different positions as desired.
Abstract:
The clamping strategy of an electromechanical brake depends on an already existing hydraulic pressure, in order to adjust the mechanical component of the clamping force and avoid an excessive clamping of the brake. The hydraulic component (FHyd) of the clamping force is estimated according to a pressure measurement, subtracted from a target force (FTar) to obtain the mechanical component to be applied (FTarNew), and the electric motor for controlling clamping of the brake is stopped at a threshold value (I2) of the current that is supplied thereto, according to the value of this mechanical component to be applied.
Abstract:
A system and method for slowing the rotation of a rotor using, for example, rotor brake system for a rotorcraft comprises: one or more generators connected to a main rotor gearbox; an electric distributed anti-torque system mounted on a tail boom of the rotorcraft comprising two or more electric motors connected to the one or more generators, wherein the two or more electric motors are connected to one or more blades; and wherein a rotation of the rotor is slowed by placing a drive load on the main rotor gearbox with the one or more generators to bleed the mechanical power from rotor into electrical power via the two or more electric motors, wherein the electric distributed anti-torque system generates thrust in opposing directions.