Abstract:
A system and method for indexing user data on storage systems is provided. A client of the storage system executes a novel client side agent that is configured to detect changes to data stored by the client on the storage system. In response to detecting that data has been modified, the agent examines modified data containers and parses the modified data to identify new and/or modified index terms or the creation/deletion of data containers. Once the data has been parsed by the agent to identify new/modified index terms, the parsed data is transmitted from the agent to a management module executing on a management server. The management module receives the parsed data and updates a search database using the received parsed data.
Abstract:
Embodiments described herein provide a storage conversion technique for rapidly converting between storage representations served by a storage system and presented to a host computer of a virtualized computing environment. The storage representations may include physical storage represented by a sequential set of blocks on disks of the storage system that are presented to the host computer in the form of a logical unit number (LUN) and virtual storage represented by a virtual storage device of the storage system that is presented to a hypervisor of the virtualized computing environment in the form of a virtual disk file. Illustratively, the LUN and virtual disk file may be storage objects (e.g., files) having different (file) types and formats in a volume of the storage system; yet each storage object may be organized as a buffer tree having indirect blocks that contain pointers configured to reference data blocks used to store data.
Abstract:
Embodiments of the present invention provide a system, method, and computer program product that enables applications transferring data packets over a network to a multi-processing system to choose how the data packets are going to be processed by, e.g., allowing the applications to pre-assign connections to a particular network thread and migrate a connection from one network thread to another network thread without putting the connection into an inconsistent state.
Abstract:
A clustered network-based storage system includes a host server, multiple high availability system controller pairs, and multiple storage devices across multiple arrays. Two independent storage array subsystems each include a quorum drive copy and are each controlled by a HA pair, with remote volume mirroring links coupling the separate HA pairs. The host server includes a virtualization agent that identifies and prioritizes communication paths, and also determines capacity across all system nodes. A system storage management agent determines an overall storage profile across the system. The virtualization agent, storage management agent, quorum drive copies and remote volume mirroring link all operate to provide increased redundancy, load sharing, or both between the separate first and second arrays of storage devices.
Abstract:
In one embodiment, a clustered storage system is configured to reduce parity overhead of Redundant Array of Independent Disks (RAID) groups, as well as to facilitate distribution and servicing of the storage containers among storage systems (nodes) of the cluster. The storage containers may be stored on one or more storage arrays of storage devices, such as solid state drives (SSDs), connected to the nodes of the cluster. The RAID groups may be formed from slices (i.e., portions) of storage spaces of the SSDs instead of the entire storage spaces of the SSDs. That is, each RAID group may be formed “horizontally” across a set of SSDs as slices (i.e., one slice of storage space from each SSD in the set). Accordingly, a plurality of RAID groups may co-exist (i.e., be stacked) on the same set of SSDs.
Abstract:
An on-disk structure of a file system has the capability to efficiently manage and organize data containers, such as snapshots, stored on a storage system. A multi-bit, monotonically increasing, snapshot identifier (“snapid”) is provided that represents a snapshot and that increases every time a snapshot is generated for a volume of the storage system. The snapid facilitates organization of snapshot metadata within, e.g., a data structure used to organize metadata associated with snapshot data. In the illustrative embodiment, the data structure is a balanced tree structure configured to index the copy-out snapshot data blocks. The snapid is also used to determine which blocks belong to which snapshots. To that end, every block that is used in a snapshot has an associated “valid-to” snapid denoting the newest snapshot for which the block is valid. The oldest snapshot for which the block is valid is one greater than the valid-to field of the next older block at the same file block number.
Abstract:
An updateable list is provided for use in mounting a storage volume. Such list may include a plurality of block references capable of being used to access corresponding blocks required for mounting the storage volume. In use, such list may be utilized for accessing the blocks in a more efficient manner, by accessing a plurality of such blocks in parallel, as well as performing the block accessing and storage volume mounting in parallel.
Abstract:
Described herein is a system and method for a scalable crash-consistent snapshot operation. Write requests may be received from an application and a snapshot creation request may further be received. Write requests received before the snapshot creation request may be associated with pre-snapshot tags and write requests received after the snapshot creation request may be associated with post-snapshot tags. Furthermore, in response to the snapshot creation request, logical interfaces may begin to be switched from a pre-snapshot configuration to a post-snapshot configuration. The snapshot may then be created based on the pre-snapshot write requests and the post-snapshot write requests may be suspended until the logical interfaces have switched configuration.
Abstract:
One or more techniques and/or systems are provided for non-disruptively addressing misalignment between a virtual data format and an underlying data format. Virtual data, such as a guest operating system of a virtual machine, may be stored within a virtual structure, such as a virtual machine disk, according to a virtual data format. The virtual structure may be stored within a storage device according to a storage data format. If misalignment is detected, then a new data container may be created within the storage device. A shim, sized according to a misalignment offset, may be inserted into the new data container in order to align the new data container with the storage device. Virtual data may be migrated from the virtual structure to the new data container to achieve alignment. During the migration, the virtual data may remain available from the virtual structure (e.g., a virtual machine may still execute).
Abstract:
The present invention provides a system and method for virtual block numbers (VBNs) to disk block number (DBN) mapping that may be utilized for both single and/or multiple parity based redundancy systems. Following parity redistribution, new VBNs are assigned to disk blocks in the newly added disk and disk blocks previously occupied by parity may be moved to the new disk.