Abstract:
A computer program product having a computer readable medium tangibly recording computer program logic for performing analytics on data at a data node, the computer program product including code to instruct a storage array to create a snapshot of the data, code to access the snapshot, by the data node, as an independent virtual volume, code to receive, at the data node, a command mapping a processing task to the data node, in which the processing task includes analysis on the data, and code to perform the processing task on the data by accessing the data through the snapshot.
Abstract:
A network storage server includes a main buffer cache to buffer writes requested by clients before committing them to primary persistent storage. The server further uses a secondary cache, implemented as low-cost, solid-state memory, such as flash memory, to store data evicted from the main buffer cache or data read from the primary persistent storage. To prevent bursts of writes to the secondary cache, data is copied from the main buffer cache to the secondary cache speculatively, before there is a need to evict data from the main buffer cache. Data can be copied to the secondary cache as soon as the data is marked as clean in the main buffer cache. Data can be written to secondary cache at a substantially constant rate, which can be at or close to the maximum write rate of the secondary cache.
Abstract:
Detection and reduction of unaligned input/output (“I/O”) requests is implemented by a storage server determining an alignment value for data stored by the server within a storage system on behalf of a first client, writing the alignment value to a portion of the volume that stores the data for the first client, but not to a portion of the volume that stores data for a second client, and changing a location of data within the portion of the volume that stores the data for the first client, but not a location of data in the portion of the volume that stores data for the second client, to an alignment corresponding to the alignment value. The alignment value is applied to I/O requests directed to the portion of the volume that stores the data blocks for the first client after the location of the data blocks has been changed.
Abstract:
A network storage server system includes a distributed object store and a metadata subsystem. The metadata subsystem stores metadata relating to the stored data objects and allows data objects to be located and retrieved easily via user-specified search queries. It manages and allows searches on at least three categories of metadata via the same user interface and technique. These categories include user-specified metadata, inferred metadata and system-defined metadata. Search queries for the metadata can include multi-predicate queries.
Abstract:
A method and system for providing an improved compliance clock service are described. An example method comprises establishing a system compliance clock (SCC) for a storage system that provides a compliant storage service, and establishing, for a volume in the storage system, a volume compliance clock (VCC). A current value of the SCC may be periodically updated based on hardware ticks monitored at the associated storage node. The volume compliance clock is to update its value based on a current value of the SCC.
Abstract:
Method and system for managing storage units are provided. A free space module scans a storage unit data structure and a reference data structure to generate an intermediate data structure that identifies storage units that are not referenced by any storage unit client. A lookup module is initiated and the storage unit clients are notified that all new references to any storage unit should be verified with the lookup module. The free space module then verifies if any of the storage units in the intermediate data structure have been referenced since the intermediate data structure was created. Any referenced storage units are removed from the intermediate data structure and a data structure identifying unreferenced storage units is generated. The data structure is then used to allocate the identified storage units.
Abstract:
Method and system is provided to perform a plurality of checks before performing a volume based snapshot restore (“VBSR”) operation. The checks may be performed by an application executed at a computing system that interfaces with a storage system. The application may determine if there are any inconsistent LUNS and foreign mapped LUNs. The application may also determine if there are any new LUNs or any new snapshots since the snapshot, which is the basis of the restore operation was created. The application may further determine if there are any backup relationships with respect to a volume that is being restored. The application takes the information and provides a report to a user. The report allows a user to ascertain the consequences of proceeding with the VBSR operation.
Abstract:
Systems and methods that enable the optimal creation of a storage object within a virtual storage system are disclosed. In accordance with embodiments, an optimal location with the storage system is determined in response to receiving an indication that a storage object is to be created within the storage system. The system and method prioritize physical storage resources in which to create the storage object, prioritize components to be provided access to the created storage object, and prioritize the interface between the physical storage resources and the accessing component. The storage object is optimally created within the storage system based on the priorities and based, at least in part, on other created storage objects.
Abstract:
A method performed in a computer-based storage system includes creating a copy of an active file system at a first point in time, where the active file system includes user data, metadata describing a structure of the active file system and the user data, and a first data structure describing storage locations of the user data and the metadata, in which creating a copy of the active file system includes selectively omitting a portion of the user data and a portion of the metadata from the copy.
Abstract:
Method and system for managing error related events while a system is processing input/output (“I/O”) requests for accessing storage space is provided. Various components are involved in processing the I/O requests. Some of these components may also have sub-components. Events related to the various components are classified with respect to their severity levels. Threshold values for a frequency of these events is set and stored in a data structure at a memory location. When an event occurs, the severity level and the threshold value for the event are determined from the data structure. The actual frequency is then compared to the stored threshold value. If the threshold value is violated and there is an alternate path to route the I/O request, then the affected component is restricted and the alternate path is used to route the I/O request.