Abstract:
A crack arrestor apparatus and method for making same by applying layers of a composite material of non-metallic fibers and resin around a length of pipe; the fibers generally aligned with the pipe circumference. The applied layers have a thicker portion in the middle and a thinner portion on the ends. Part of the pipe covered by the thicker portion is then yielded by application of radial force past the elastic limit of the pipe, thereby creating circumferential tension on the composite. At least a portion of the composite remains in circumferential tension upon release of the radial force. The residual stresses in the yielded metal pipe assist to arrest crack propagation. Thereby, the process to arrest a crack in a metal pipe includes maintaining circumferential tension in a composite residing around the pipe while maintaining compressive circumferential residual stress on the metal pipe covered by the composite.
Abstract:
The present invention discloses a high-capacity drilling rig system that includes novel design features that alone and more particularly in combination facilitate a fast rig-up and rig-down with a single set of raising cylinders and maintains transportability features. In particular, a transport trailer is disclosed having a first support member and a drive member which align the lower mast portion with inclined rig floor ramps and translate the lower mast legs up the ramps and into alignment for connection. A pair of wing brackets is pivotally deployed from within the lower mast width for connection to the raising cylinder for raising the mast from a horizontal position into a vertical position. A cantilever is pivotally deployed from beneath the rig floor to a position above it for connection to the raising cylinder for raising the substructure from a collapsed position into the erect position.
Abstract:
The present invention discloses a high-capacity drilling rig system that includes novel design features that alone and more particularly in combination facilitate a fast rig-up and rig-down with a single set of raising cylinders and maintains transportability features. In particular, a transport trailer is disclosed having a first support member and a drive member which align the lower mast portion with inclined rig floor ramps and translate the lower mast legs up the ramps and into alignment for connection. A pair of wing brackets is pivotally deployed from within the lower mast width for connection to the raising cylinder for raising the mast from a horizontal position into a vertical position. A cantilever is pivotally deployed from beneath the rig floor to a position above it for connection to the raising cylinder for raising the substructure from a collapsed position into the erect position.
Abstract:
The present invention discloses a high-capacity drilling rig system that includes novel design features that alone and more particularly in combination facilitate a fast rig-up and rig-down with a single set of raising cylinders and maintains transportability features. In particular, a transport trailer is disclosed having a first support member and a drive member which align the lower mast portion with inclined rig floor ramps and translate the lower mast legs up the ramps and into alignment for connection. A pair of wing brackets is pivotally deployed from within the lower mast width for connection to the raising cylinder for raising the mast from a horizontal position into a vertical position. A cantilever is pivotally deployed from beneath the rig floor to a position above it for connection to the raising cylinder for raising the substructure from a collapsed position into the erect position.
Abstract:
A robotic arm includes a first link and a first joint. The first link has internal link cables extending from one end to an opposed end thereof. The first joint is operably connected to the first link at one end thereof. The first joint has a hollow drive shaft, an off axis drivel 21 and a first joint motor and first joint internal cables extending through the hollow drive shaft. The link cables and the first joint cables are operably connected. The robotic arm may further include a second joint operably connected to the first link. The second joint module has an active side, a passive side with electronic connectors, second joint internal cables, and a second joint motor and the active side is mechanically connected to the link and the electronic connectors of the passive side are operably connected to the link cables.
Abstract:
The present invention discloses a drill rig relocation system. Lift frames are provided as add-ons to existing drill rigs, or as integral openings within the length of the base boxes. A lift cylinder and bearing mat assembly is connected beneath the lift frame or base boxes. Each bearing mat assembly has a slew drive for controlled directional rotation. A torque arrest system allows vertical movement of the torque reaction point as the substructure is elevated to control the orientation and magnitude of forces. In one embodiment, the drill rig is supported on linear sleeve bearings slideably mounted in the bearing mat assemblies. Translation cylinders on the bearing mats expand to move the drill rig by translating the linear sleeve bearings along the shafts.
Abstract:
A method to produce and manufacture cocrystals and salts is disclosed wherein crystalline solids and other components were combined in the desired proportions into a mixing chamber and mixed at high intensity to afford a cocrystalline product. No grinding media were required. The mixing system consists of a resonant acoustic vibratory system capable of supplying a large amount of energy to the mixture and is tunable to a desired resonance frequency and amplitude. The use of resonant acoustic mixing to assist cocrystallization is novel. This discovery enables the manufacture of cocrystals and salt forms, simplifying their manufacture and scale-up, and avoiding the use of grinding methods or grinding media. The present invention affords the manufacture of cocrystals and salts on kilogram to multi-ton scale and is adaptable to continuous manufacturing through the use of resonant mixing methods.
Abstract:
Exemplary embodiments provide a rotary misalignment-compensation bushing connection system that may be used in large-scale operations where several components are mounted in alignment on a single pin. For example, the misalignment-compensation system may be used in preloaded connection of a male lug rotatably mounted between a first lug and a second lug, on heavy equipment, for example, oil field exploration and production equipment. The misalignment-compensation system includes tapered cone bushings and surrounding counter-tapered cup bushings that expand in diameter and align the connection system as it is torqued together assembling the components to the pin.
Abstract:
An integrated head assembly (100) is disclosed for a nuclear reactor. The preferred integrated head assembly includes a lift assembly (150) that supports the reactor vessel closure head (90) and integrated head assembly for removal, a separate support structure (202) supported by a ring beam (151) that sets atop the reactor vessel closure head, a shroud assembly (200), a seismic support system (300), a baffle assembly (500), a missile shield (400), and a CRDM cooling system. The CRDM cooling system draws cooling air into the baffle assembly, downwardly past the CRDMs (96), outwardly to upright air ducts (600), upwardly to an upper plenum (680), and out of the assembly through the air fans (190). In a second embodiment the integrated head assembly (1100) includes a missile shield (1400) and CRDM cooling system (1600) that permits access to individual CRDMs from above.
Abstract:
An integrated head assembly (100) is disclosed for a nuclear reactor. The preferred integrated head assembly includes a lift assembly (150) that supports the reactor vessel closure head (90) and integrated head assembly for removal, a separate support structure (202) supported by a ring beam (151) that sits atop the reactor vessel closure head, a shroud assembly (200), a seismic support system (300), a baffle assembly (500), a missile shield (400), and a CRDM cooling system. The CRDM cooling system draws cooling air into the baffle assembly, downwardly past the CRDMs (96), outwardly to upright air ducts (600), upwardly to an upper plenum (680), and out of the assembly through the air fans (190).