摘要:
A method to produce and manufacture cocrystals and salts is disclosed wherein crystalline solids and other components were combined in the desired proportions into a mixing chamber and mixed at high intensity to afford a cocrystalline product. No grinding media were required. The mixing system consists of a resonant acoustic vibratory system capable of supplying a large amount of energy to the mixture and is tunable to a desired resonance frequency and amplitude. The use of resonant acoustic mixing to assist cocrystallization is novel. This discovery enables the manufacture of cocrystals and salt forms, simplifying their manufacture and scale-up, and avoiding the use of grinding methods or grinding media. The present invention affords the manufacture of cocrystals and salts on kilogram to multi-ton scale and is adaptable to continuous manufacturing through the use of resonant mixing methods.
摘要:
A method for producing a granular crystal includes steps of melting a crystal to be a molten solution, ejecting a droplet of the molten solution from a nozzle with a three dimensional motion. An apparatus for producing a granular crystal includes a crucible, an actuator, and at least one nozzle. The crucible contains a molten solution of a crystal. The actuator moves at least one nozzle with three-dimensional motion. At least one nozzle ejects a droplet of the molten solution with a three dimensional motion.
摘要:
The purpose of diffusion assisted crystal hydrothermal growth is to facilitate a greatly increased crystal growth rate that would save time that is precious in such a material and manpower costly process. The assisted crystal growth itself requires the utilization of a piezoelectric shaker connected to the autoclave in which most industrial hydrothermal crystals are grown. The waveform can be modulated to induce transport of nutrient in a singular direction, customized to the topology of the apparatus. As it stands currently, the growth of most crystals that require autoclaves for their production can take anywhere from 3 months to up to 2 years, and accordingly carries many costs, particularly electricity and supervision of the autoclave(s), and other issues that may arise during the growth. While the product of this labor results in high-quality crystals, in reality, these are not at all what is needed outside of the laboratory environment. Using the assisted crystal hydrothermal growth process, average crystal growth can be cut in half, with the resulting crystals consequently being of a slightly lower quality, though still sufficient for most engineering purposes. Another advantage of using a piezoelectric shaker is that an additional sensor can be added to the autoclave to monitor the health of the autoclave using trending data obtained during the growth.
摘要:
Disclosed are a crystal form of (6S)-5-methyltetrahydrofolate salt and a method for preparing the same. The crystal form is: Form C of the crystal form of (6S)-5-methyltetrahydrofolate calcium salt, where the X-ray diffraction pattern has diffraction peaks at the 2θ angles of 6.3±0.2 and 19.2±0.2; or the crystal form of (6S)-5-methyltetrahydrofolate strontium salt, where the X-ray diffraction pattern has diffraction peaks at the 2θ angles of 6.5±0.2 and 22.0±0.2. The crystal form of (6S)-5-methyltetrahydrofolate salt of the present invention has the advantages of excellent physicochemical properties, good stability, high purity, good reproducibility, and being more suitable for production on an industrial scale.
摘要:
A method of making a liquid dispersion for the manufacture of a photonic crystal. The method comprises dispersing monodispersed spheres in a liquid to form a liquid dispersion, and subjecting the liquid dispersion to an ultrasonic treatment. Ammonia solution may also be added to the liquid dispersion. The ultrasound treatment breaks up agglomerations of monodispersed spheres, and the resulting photonic crystal made using the dispersion is more highly ordered and hence of higher quality.
摘要:
A method for making nanoparticles or fine particles includes (1) in an electrolysis cell, supplying a power (potentiostat) to an element that acts as a counter electrode, and another element that is working electrode; and rubbing the working electrode to make nanoparticles or fine particles. Another method for making nanoparticles or fine particles includes (1) in an electrolysis cell, supplying a power (potentiostat) to an element that acts as a counter electrode, and another element that is working electrode; and (2) mechanically vibrating the working electrode to make nanoparticles or fine particles.
摘要:
A method of making a liquid dispersion for the manufacture of a photonic crystal. The method comprises dispersing monodispersed spheres in a liquid to form a liquid dispersion, and subjecting the liquid dispersion to an ultrasonic treatment. Ammonia solution may also be added to the liquid dispersion. The ultrasound treatment breaks up agglomerations of monodispersed spheres, and the resulting photonic crystal made using the dispersion is more highly ordered and hence of higher quality.
摘要:
Nanoparticle composites comprised of a metal oxide and ions of a metallic element included within a crystal lattice of said metal oxide are disclosed. Process of preparing the nanoparticle composites per se and incorporated in or on a substrate are also disclosed. Uses of the nanoparticle composites and of substrates incorporating same, particularly for reducing a formation of a load of a microorganism or of a biofilm, are also disclosed.
摘要:
The purpose of diffusion assisted crystal hydrothermal growth is to facilitate a greatly increased crystal growth rate that would save time that is precious in such a material and manpower costly process. The assisted crystal growth itself requires the utilization of a piezoelectric shaker connected to the autoclave in which most industrial hydrothermal crystals are grown. The waveform can be modulated to induce transport of nutrient in a singular direction, customized to the topology of the apparatus. As it stands currently, the growth of most crystals that require autoclaves for their production can take anywhere from 3 months to up to 2 years, and accordingly carries many costs, particularly electricity and supervision of the autoclave(s), and other issues that may arise during the growth. While the product of this labor results in high-quality crystals, in reality, these are not at all what is needed outside of the laboratory environment. Using the assisted crystal hydrothermal growth process, average crystal growth can be cut in half, with the resulting crystals consequently being of a slightly lower quality, though still sufficient for most engineering purposes. Another advantage of using a piezoelectric shaker is that an additional sensor can be added to the autoclave to monitor the health of the autoclave using trending data obtained during the growth.
摘要:
Disclosed are a crystal form of (6S)-5-methyltetrahydrofolate salt and a method for preparing the same. The crystal form is: Form C of the crystal form of (6S)-5-methyltetrahydrofolate calcium salt, where the X-ray diffraction pattern has diffraction peaks at the 2θ angles of 6.3±0.2 and 19.2±0.2; or the crystal form of (6S)-5-methyltetrahydrofolate strontium salt, where the X-ray diffraction pattern has diffraction peaks at the 2θ angles of 6.5±0.2 and 22.0±0.2. The crystal form of (6S)-5-methyltetrahydrofolate salt of the present invention has the advantages of excellent physicochemical properties, good stability, high purity, good reproducibility, and being more suitable for production on an industrial scale.