Abstract:
An interactive response system directs input to a software-based router, which is able to intelligently respond to the input by drawing on a combination of human agents, advanced recognition and expert systems. The system utilizes human “intent analysts” for purposes of interpreting customer input. Automated recognition subsystems are trained by coupling customer input with IA-selected intent corresponding to the input, using model-updating subsystems to develop the training information for the automated recognition subsystems.
Abstract:
A request from a party is received by a receiver from a remote system. The request from the party is received when the party attempts to obtain a service using the remote system. A selective determination is made to request, over a network, authentication of the party by a remote biometric system. A request is sent to the remote system for the party to provide a biometric sample responsive to determining to request authentication of the party. The service is provided contingent upon authentication of the party by the remote biometric system.
Abstract:
An interactive response system mixes HSR subsystems with ASR subsystems to facilitate overall capability of voice user interfaces. The system permits imperfect ASR subsystems to nonetheless relieve burden on HSR subsystems. An ASR proxy is used to implement an IVR system, and the proxy dynamically determines how many ASR and HSR subsystems are to perform recognition for any particular utterance, based on factors such as confidence thresholds of the ASRs and availability of human resources for HSRs.
Abstract:
A speech interpretation module interprets the audio of user utterances as sequences of words. To do so, the speech interpretation module parameterizes a literal corpus of expressions by identifying portions of the expressions that correspond to known concepts, and generates a parameterized statistical model from the resulting parameterized corpus. When speech is received the speech interpretation module uses a hierarchical speech recognition decoder that uses both the parameterized statistical model and language sub-models that specify how to recognize a sequence of words. The separation of the language sub-models from the statistical model beneficially reduces the size of the literal corpus needed for training, reduces the size of the resulting model, provides more fine-grained interpretation of concepts, and improves computational efficiency by allowing run-time incorporation of the language sub-models.
Abstract:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for approximating responses to a user speech query in voice-enabled search based on metadata that include demographic features of the speaker. A system practicing the method recognizes received speech from a speaker to generate recognized speech, identifies metadata about the speaker from the received speech, and feeds the recognized speech and the metadata to a question-answering engine. Identifying the metadata about the speaker is based on voice characteristics of the received speech. The demographic features can include age, gender, socio-economic group, nationality, and/or region. The metadata identified about the speaker from the received speech can be combined with or override self-reported speaker demographic information.
Abstract:
An interactive response system mixes HSR subsystems with ASR subsystems to facilitate overall capability of voice user interfaces. The system permits imperfect ASR subsystems to nonetheless relieve burden on HSR subsystems. An ASR proxy is used to implement an IVR system, and the proxy dynamically determines how many ASR and HSR subsystems are to perform recognition for any particular utterance, based on factors such as confidence thresholds of the ASRs and availability of human resources for HSRs. In some embodiments, the ASR proxy dynamically selects one or more recognizers based at least in part on the identified grammar and the time length of the utterance.
Abstract:
Systems and methods for processing audio are provided. The system may include a processor to convert an audio input received via a call to text. The processor may perform a comparison between a portion of the text to one or more phrases included in a table. The processor may also make a selection of at least one of a first object or a first action based on the comparison. The processor may further route the call based on the at least one of the first object or the first action.
Abstract:
An interactive response system mixes HSR subsystems with ASR subsystems to facilitate overall capability of voice user interfaces. The system permits imperfect ASR subsystems to nonetheless relieve burden on HSR subsystems. An ASR proxy is used to implement an IVR system, and the proxy dynamically determines how many ASR and HSR subsystems are to perform recognition for any particular utterance, based on factors such as confidence thresholds of the ASRs and availability of human resources for HSRs.
Abstract:
An interactive response system mixes HSR subsystems with ASR subsystems to facilitate overall capability of voice user interfaces. The system permits imperfect ASR subsystems to nonetheless relieve burden on HSR subsystems. An ASR proxy is used to implement an IVR system, and the proxy dynamically determines how many ASR and HSR subsystems are to perform recognition for any particular utterance, based on factors such as confidence thresholds of the ASRs and availability of human resources for HSRs.
Abstract:
A request from a party is received by a receiver from a remote system. The request from the party is received when the party attempts to obtain a service using the remote system. A selective determination is made to request, over a network, authentication of the party by a remote biometric system. A request is sent to the remote system for the party to provide a biometric sample responsive to determining to request authentication of the party. The service is provided contingent upon authentication of the party by the remote biometric system.