Abstract:
Secure communication of user inputs is achieved by isolating part of an endpoint device such that certificates and encryption keys are protected from corruption by malware. Further, the communication is passed through a trusted data relay that is configured to decrypt and/or certify the user inputs encrypted by the isolated part of the endpoint device. The trusted data relay can determine that the user inputs were encrypted or certified by the protected certificates and encryption keys, thus authenticating their origin within the endpoint device. The trusted data relay then forwards the inputs to an intended destination. In some embodiments, the isolated part of the endpoint device is configured to detect input created by auto-completion logic and/or spell checking logic.
Abstract:
Secure communication of user inputs is achieved by isolating part of an endpoint device such that certificates and encryption keys are protected from corruption by malware. Further, the communication is passed through a trusted data relay that is configured to decrypt and/or certify the user inputs encrypted by the isolated part of the endpoint device. The trusted data relay can determine that the user inputs were encrypted or certified by the protected certificates and encryption keys, thus authenticating their origin within the endpoint device. The trusted data relay then forwards the inputs to an intended destination. In some embodiments, the isolated part of the endpoint device is configured to detect input created by auto-completion logic and/or spell checking logic.
Abstract:
Secure communication of user inputs is achieved by isolating part of an endpoint device such that certificates and encryption keys are protected from corruption by malware. Further, the communication is passed through a trusted data relay that is configured to decrypt and/or certify the user inputs encrypted by the isolated part of the endpoint device. The trusted data relay can determine that the user inputs were encrypted or certified by the protected certificates and encryption keys, thus authenticating their origin within the endpoint device. The trusted data relay then forwards the inputs to an intended destination. In some embodiments, the isolated part of the endpoint device is configured to detect input created by auto-completion logic and/or spell checking logic.
Abstract:
A method to detect potential problems within a heterogeneous and diverse application environment. Operations data is received from a plurality of application servers within the application environment. The operations data pertains to operations performed at the plurality of application servers over a predetermined time interval. The operations data is aggregated. The aggregated data is compared to reference data, and a potential problem within the application environment is detected if the aggregated data deviates from the reference data in a predetermined manner.
Abstract:
A broom comprises a handle and a head supported by the handle. The head comprises a first head section pivotably connected to a second head section such that the head sections may rotate relative to one another between a folded position and an unfolded position. An actuator is movably mounted on the handle between a first position and a second position. A first connecting member connects the actuator to the first head section and a second connecting member connects the actuator to the second head section such that movement of the actuator between the first position and the second position moves the head sections relative to one another between the folded position and the unfolded position. A method of operating the broom is also provided.
Abstract:
A method for providing access to a passive optical network for services to homes or businesses from two or more telecommunications service providers and a billing means is described. A first service provider connects to a point of presence at one side of passive optical network. The provider transmits the appropriate services through this network to an authorization receiver. The authorization receiver is used to receive a periodic authorization code from the network provider to enable the appropriate services from the service provider to be transmitted to a subscriber at a home or business. The authorization receiver enables an optical fiber path to be established for the services to flow to and from the home or business. The authorization code that is transmitted through the network also provides an unambiguous means to provide a billing record such that the service provider can be billed by the network provider on an individual service address connected basis in conjunction with a record of houses passed and not yet connected.
Abstract:
An assembly which comprises (a) a duct (22) for transmission of fluids, said duct having longitudinal axis, (b) at least one emitter (301) capable of exciting a beam of radiation (21) in the form of a cone having root angles βex and βey, which may be the same or different, into a cross section area of a duct to be analysed in a direction downstream of fluid flow in the duct at an angle λe from the plane perpendicular to the longitudinal axis of the duct, the angle λe being between 5° to 45°, (c) a detector (23, 304) sensitive to radiation radiated by scattering centres in the fluid over at least 1% of the cross sectional area of the duct, the direction of the central axis of the emitter cone being at an angle α to the direction of the central axis of the detector cone, the detector cone having root angles βdx and βdy, which may be the same or different and the detector cone having angle λd perpendicular to the longitudinal axis of the duct, the direction of the detector being downstream of fluid flow in the duct, the angle α being in the range 0° to 180° and angle λd being between 5° to 45°, the detector collecting scattered radiation and the detector being coupled to (d) a collator (310) for collecting data from the detector.