Abstract:
Systems and methods for local and master management units in a photovoltaic energy system. In one embodiment, a method implemented in a computer system includes sending a first identification code from a local management unit to a master management unit. The first identification code is associated with the first local management unit, and the local management unit controls a solar module. An authentication of the first identification code is received from the master management unit. In response to receiving the authentication, active operation of the local management unit is continued (e.g., for a set time period).
Abstract:
Methods and systems with a step-up converter are provided based on a boost converter. In one aspect, a step-up converter includes: a boost converter having a first inductor; a second inductor paired on a core with the first inductor; and a rectifier circuit coupled with the second inductor to generate a direct current output.
Abstract:
A solar cell having an open loop voltage that approaches a critical voltage range when exposed to light. A circuit, connected to the solar cell, is configured to load the solar cell when the open loop voltage of the solar cell reaches a threshold within a predetermined range of the critical voltage range.
Abstract:
Apparatuses and methods to firewall distributed energy sources. In one aspect, an apparatus includes: a first connector configured to interface with a distributed energy source; a second connector configured to interface with a connection point of an electric power system; at least one switch coupled between the first connector and the second connector; at least one sensor coupled with the switch; and a controller coupled with the at least one switch, the controller to use the at least one switch to selectively connect or disconnect an electric path between the first connector and the second connector based on signals from the at least one sensor.
Abstract:
Systems and methods are disclosed for removing charge buildup/leakage from solar modules. A discharge controller may be coupled between a solar module and a string bus of a solar array. The discharge controller may be configured to disconnect the solar module from the string bus, and to connect a grounded frame to solar cells of the solar module. Since the grounded frame of the solar module may be grounded, connecting the grounded frame and the solar cells allows charge buildup/leakage to discharge into ground.
Abstract:
Apparatuses and methods include a photovoltaic energy production unit to generate electricity. A local management unit is coupled between the photovoltaic energy production unit and a connection of energy production units forming a string bus. The local management unit includes a controller and switching circuitry. The controller provide a control for the switching circuitry to deliver electrical energy to the string bus. A communication transmission modulator is associated with the local management unit. The communication transmission modulator modulates the control with data to be transmitted from the local management unit over the string bus.
Abstract:
Systems and methods to balance currents among a plurality of photovoltaic units connected in series. In aspect, a management unit is coupled between a photovoltaic energy production unit and a string of energy production units. The management unit has an energy storage element (e.g., a capacitor) connected to the photovoltaic energy production unit. The management unit further has a switch to selectively couple to the energy storage element and the photovoltaic energy production unit to the string. The management unit allows the current in the string to be larger than the current in the photovoltaic energy production unit.