Abstract:
Systems and methods are disclosed for removing charge buildup/leakage from solar modules. A discharge controller may be coupled between a solar module and a string bus of a solar array. The discharge controller may be configured to disconnect the solar module from the string bus, and to connect a grounded frame to solar cells of the solar module. Since the grounded frame of the solar module may be grounded, connecting the grounded frame and the solar cells allows charge buildup/leakage to discharge into ground.
Abstract:
A system and method for automated shutdown, disconnect, or power reduction of solar panels. A system of solar panels includes one or more master management units (MMUs) and one or more local management units (LMUs). The MMUs are in communication with the LMUs with the MMUs and LMUs “handshaking” when the system is in operation. The MMUs are connected to one or more controllers which in turn are connected to emergency detection sensors. Upon a sensor detection of an emergency, the associated MMU is notified which in turn instructs associated LMUs to take appropriate action. In the event that communication with the MMUs has been cut off, the LMUs take the initiative to shutdown, disconnect, or reduce the output of associated string(s) of solar panels.
Abstract:
Apparatuses and methods for configuring and managing solar panels to form strings of photovoltaic energy generators with improved performance and reduced cost. The photovoltaic energy generators are connected via one or more combined local management units (CLMUs), each having a plurality of direct current converters connected to and configured to receive direct current power from a respective solar panel. A controller unit shared by the CLMU's direct current converters is utilized to separately control the operation of each converter such that the power extracted from the solar panels is maximized. A communications unit coupled with the controller unit is utilized to facilitate communications between the controller unit and a system unit remote from the CLMU to report measurements and receive control signals.
Abstract:
Apparatuses and methods include a solar array having one or more strings of series-connected local management units (LMUs). Each LMU is parallel-connected to one of a plurality of solar modules. The strings are connected in parallel via a parallel bus. Local string management units (LSMUs) can increase or decrease an output voltage of the solar array by upconverting or downconverting string output voltages from each string. LSMUs can also operate in a bypass mode to increase overall power output.
Abstract:
A system and computer-implemented method for creating a new model or updating a previously-created model based on a template are described. A template is generated from a previously-created model. The previously-created model specifies a set of parameters associated with a manufacturing process, a process tool or chamber. Variables associated with the manufacturing process are acquired, monitored, and analyzed. A statistical analysis (or multivariate statistical analysis) is employed to analyze the monitored variables and the set of parameters. When any of the monitored variables satisfy a threshold condition, a new model is created or the parameters of the previously-created model are updated, adjusted, or modified based on the template and the monitored variables. A user interface facilitating communication between a user and the systems and display of information is also described.
Abstract:
Apparatuses and methods to reduce safety risks associated with photovoltaic systems by providing a safety switch on a photovoltaic panel. In one embodiment, a photovoltaic panel includes: at least one photovoltaic cell; a connector to output energy from the photovoltaic panel; and a switch coupled between the at least one photovoltaic cell and the connector. The switch is configured to disconnect the at least one photovoltaic cell from the connector during installation of the photovoltaic panel, and to connect the at least one photovoltaic cell with the connector after installation of the photovoltaic panel.
Abstract:
A solar cell having an open loop voltage that approaches a critical voltage range when exposed to light. A circuit, connected to the solar cell, is configured to load the solar cell when the open loop voltage of the solar cell reaches a threshold within a predetermined range of the critical voltage range.
Abstract:
A method and system to provide a distributed local energy production system with high-voltage DC bus is disclosed. In one embodiment, a system comprises a management unit to be interconnected via a network bus to a set of link modules, each link module coupled to a separate local energy production unit, each link module to include a Maximum Power Point Tracking (MPPT) step-up converter and a parameter monitoring unit to produce parameter data for the respective local energy production unit, and the local energy production units to be coupled to a high voltage power line to deliver produced electrical energy to a consumer of the energy; and the management unit to receive measured parameters from the link modules, and to send control signals to link modules to provide individual operational control of the local energy production units, the management unit to be coupled to one or more separate computers to provide the computers with access to the parameter data and control of the local energy production units.
Abstract:
Apparatuses and methods for configuring and managing solar panels to form strings of photovoltaic energy generators with improved performance and reduced cost. The photovoltaic energy generators are connected via one or more combined local management units (CLMUs), each having a plurality of direct current converters connected to and configured to receive direct current power from a respective solar panel. A controller unit shared by the CLMU's direct current converters is utilized to separately control the operation of each converter such that the power extracted from the solar panels is maximized. A communications unit coupled with the controller unit is utilized to facilitate communications between the controller unit and a system unit remote from the CLMU to report measurements and receive control signals.
Abstract:
Apparatuses and methods for configuring and managing solar panels to form strings of photovoltaic energy generators with improved performance and reduced cost. The photovoltaic energy generators are connected via one or more combined local management units (CLMUs), each having a plurality of direct current converters connected to and configured to receive direct current power from a respective solar panel. A controller unit shared by the CLMU's direct current converters is utilized to separately control the operation of each converter such that the power extracted from the solar panels is maximized. A communications unit coupled with the controller unit is utilized to facilitate communications between the controller unit and a system unit remote from the CLMU to report measurements and receive control signals.