Abstract:
An LED light source is described. The light source includes an LED and a diffuser. The LED emits a light having a dominant wavelength. The diffuser includes a filler material, which includes particles. The mean diameter of the particles is at least as large as the dominant wavelength of the light emitted by the LED. The particles are configured to scatter the light emitted by the LED.
Abstract:
A circuit for driving multiple light emitting diodes (LEDs) includes at least two sets of LEDs, each set comprised of one or more LEDs in series. The circuit further includes a single inductor connected in series with the two sets of LEDs. At least one set of LEDs is connected to a shunting transistor connected in parallel with the set of LEDs. The duty cycle of the shunting transistor is controlled by a single controller connected to the shunting transistor and the inductor.
Abstract:
An LED bulb includes a shell, one or more LEDs, a thermally conductive liquid, and a liquid-volume compensator mechanism. The one or more LEDs are disposed within the shell. The thermally conductive liquid is held within the shell. The liquid-volume compensator mechanism is configured to compensate for expansion of the thermally conductive liquid.
Abstract:
A light-emitting diode (LED) bulb has a shell and a base attached to the shell. An LED is within the shell. A driver circuit provides current to the LED. The driver circuit has a power factor control circuit that includes a tracking circuit configured to produce a tracking signal indicative of the voltage of the supply line. The power factor control circuit also includes a switch-mode power supply (SMPS) controller having an input pin and an output pin. The tracking circuit is connected to the input pin. Based on the signal at the input pin, the SMPS controller is configured to change a frequency of an output signal on the output pin.
Abstract:
An anti-theft collar for preventing removal of a light-emitting diode (LED) bulb having cooling fins when the LED bulb is installed in a socket housing of a light fixture. The anti-theft collar includes a wall portion configured to enclose at least a portion of the LED bulb and at least a portion of the socket housing. The anti-theft collar also includes a pair of ribs configured to engage with the cooling fins to inhibit rotation of the LED bulb with respect to the anti-theft collar when the anti-theft collar is installed. The anti-theft collar also includes one or more features configured to inhibit movement of the anti-theft collar with respect to the socket housing of the light fixture.
Abstract:
An anti-theft system for preventing removal of a light bulb when installed in a socket housing of a light fixture. The anti-theft system includes an anti-theft collar configured to mechanically engage with the light bulb and the socket housing. The anti-theft collar includes a wall portion configured to enclose at least a portion of the light bulb and at least a portion of the socket housing. The anti-theft collar also includes one or more features configured to inhibit rotation of the light bulb with respect to the anti-theft collar when the anti-theft collar is installed. The anti-theft collar also includes one or more features configured to inhibit movement of the anti-theft collar with respect to the socket housing of the light fixture.
Abstract:
An LED bulb is described, comprising LEDs within a shell and a driver circuit to operate the LEDs at a plurality of brightness levels. The driver circuit comprises first and second inputs to receive AC, a neutral input, a converter circuit, first and second rectifier circuits, a detector circuit, and a processing circuit. The first rectifier circuit is connected to the first and neutral inputs and rectifies the AC received. The second rectifier circuit is connected to the second and neutral inputs and rectifies the AC received. The detector circuit is connected to the first and second rectifier circuits. The processing circuit has a first and a second processor input, and is connected to the detector circuit. The processing circuit produces a chop signal with a duty cycle based on whether the first or second input is hot. The converter circuit powers the LEDs based on the chop signal.
Abstract:
An LED bulb includes at least one LED mount disposed within a shell. At least one LED is attached to the at least one LED mount. A thermally conductive liquid is held within the shell. The LED and LED mount are immersed in the thermally conductive liquid. A liquid displacer is immersed in the thermally conductive liquid. The liquid displacer is configured to displace a predetermined amount of the thermally conductive liquid to reduce the amount of thermally conductive liquid held within the shell. The liquid displacer is also configured to facilitate a flow of the thermally conductive liquid from the LED mount to an inner surface of the shell.
Abstract:
An LED bulb includes a base, a shell, and a plurality of LEDs. The shell is connected to the base and the plurality of LEDs is disposed within the shell. The LEDs are configured to provide the LED bulb with a uniform light-distribution profile.
Abstract:
A glass LED bulb, which includes a body of glass, the body having at least one hollow portion, and at least one LED contained within the at least one hollow portion. A thermally conductive material is preferably included within the at least one hollow portion. The body of glass can be bulb-shaped or alternatively shaped like an incandescent bulb.