Abstract:
An LED bulb includes a base and a shell connected to the base. The shell is filled with a thermally conductive liquid for cooling the bulb. A plurality of LEDs is disposed within the shell. A first set of LEDs of the plurality of LEDs is positioned a first distance with respect to the center of a convex portion of the shell, and at a first angle with respect to a centerline of the LED bulb. A second set of LEDs of the plurality of LEDs is positioned a second distance with respect to the center of the convex portion of the shell, and at a second angle with respect to a centerline of the LED bulb. The first distance, first angle, second distance, and second angle are selected such that the LED bulb has a light-distribution profile that varies less than 20 percent in light intensity over 0 degrees to 135 degrees as measured from an axis from the center of the shell through an apex of the shell.
Abstract:
A light emitting diode (LED) bulb includes a base, a shell connected to the base forming an enclosed volume, a chassis disposed within the shell, and a plurality of LEDs disposed with the shell. The LED bulb also includes a thermally conductive liquid disposed within the enclosed volume. The LEDs and the chassis are immersed in the thermally conductive liquid. The chassis has a first opening and a second opening. The second opening is spaced from the first opening to facilitate a passive convective flow of the thermally conductive liquid to exchange a first volume of the thermally conductive liquid interior the chassis with a second volume of the thermally conductive liquid exterior the chassis.
Abstract:
A light-emitting diode (LED) bulb includes a reflector, a plurality of LEDs disposed within a recess of the reflector, a thermally conductive liquid disposed within the recess, and an adjustment mechanism to move the LEDs from a first position to a second position, with respect to the reflector. The thermally conductive liquid may transfer heat generated by the LEDs to the reflector, and the reflector may dissipate heat transferred by the thermally conductive liquid to the surrounding environment. The reflector may also reflect light from the LEDs to produce a first light-distribution profile, having a respective first beam angle, when the LEDs are in the first position, and to produce a second light-distribution profile, having a respective second beam angle, when the LEDs are in the second position.
Abstract:
A circuit for driving multiple light emitting diodes (LEDs) includes at least two sets of LEDs, each set comprised of one or more LEDs in series. The circuit further includes a single inductor connected in series with the two sets of LEDs. At least one set of LEDs is connected to a shunting transistor connected in parallel with the set of LEDs. The duty cycle of the shunting transistor is controlled by a single controller connected to the shunting transistor and the inductor.
Abstract:
An LED bulb is described, comprising LEDs within a shell and a driver circuit to operate the LEDs at a plurality of brightness levels. The driver circuit comprises first and second inputs to receive AC, a neutral input, a converter circuit, first and second rectifier circuits, a detector circuit, and a processing circuit. The first rectifier circuit is connected to the first and neutral inputs and rectifies the AC received. The second rectifier circuit is connected to the second and neutral inputs and rectifies the AC received. The detector circuit is connected to the first and second rectifier circuits. The processing circuit has a first and a second processor input, and is connected to the detector circuit. The processing circuit produces a chop signal with a duty cycle based on whether the first or second input is hot. The converter circuit powers the LEDs based on the chop signal.
Abstract:
A liquid-cooled light emitting diode (LED) bulb which includes a base, a shell connected to the base forming an enclosed volume, and a plurality of LEDs attached to the base and disposed within the shell. The LED bulb also includes a volume of thermally-conductive liquid held within the enclosed volume. A scavenger element comprising a scavenger material is attached to the base and is exposed to the thermally-conductive liquid. The scavenger material is configured to capture contaminants in the thermally-conductive liquid.
Abstract:
An LED bulb having bulb-shaped shell and thermally conductive fluid or gel within the shell. The bulb includes at least one LED within the shell. The bulb includes at least one LED within the shell and a base. The base can be configured to fit within an electrical socket and can include a series of screw threads and a base pin, wherein the screw threads and base pin are dimensioned to be received within a standard electrical socket. Alternatively, the base can be configured to fit within a suitable electric socket.