Abstract:
A spatial multiplexing detection device using a MIMO technology comprises a MIMO detector for detecting receive symbols which correspond to symbols transmitted through transmit antennas from receive signals when the transmit data transmitted by the terminal group are received through receive antennas; a terminal identifier for identifying the receive symbols detected by the MIMO detector into symbols which correspond to respective terminals in the terminal group; a symbol demapper for demapping the receive symbols identified by the terminal identifier to binary data which correspond to a modulation method used by the terminal group; and a reverse data processor for performing deinterleaving, decoding of error correction codes, and descrambling on the binary data demapped by the symbol demapper, and detecting receive data of the respective terminals.
Abstract:
A method of configuring a preamble of a downlink frame for synchronization in data frame transmission of a 60 GHz a wireless local area network system, the method comprising arranging a short preamble having a plurality of repetitive S symbols, and an IS symbol, and arranging a long preamble having a long cyclic prefix (CP) and a plurality of L symbols for frame synchronization and symbol timing by performing auto-correlation according to the length of window of the auto-correlation.
Abstract:
A wireless transmitter which performs reconfiguration for high mobility and high throughput includes: an operation mode decision unit configured to decide an operation mode depending on mobility, a required data rate, and wireless link performance; a clock generation unit configured to generate a plurality of clock signals; a selection unit configured to select necessary clock signals among the plurality of clock signals generated by the clock generation unit according to the operation mode decided by the operation mode decision unit; and at least one or more digital modulation units configured to modulate transmitted data by adjusting a signal bandwidth of a frequency domain and a transmission time of a time domain using the clock signals selected by the selection unit.
Abstract:
A method for controlling channel access performed by an access point (AP) in a wireless system is provided. The method includes: receiving at least one frame from at least one station (STA), respectively, for a specific time period, each frame including information on a contention window (CW) used when the frame is transmitted; processing information one at least one CW for each STA; determining whether to control the channel access based on the processed information on the CW; selecting an abnormal STA candidate group if it is determined that the channel access control is performed; and controlling the channel access to each STA included in the abnormal candidate STA group.
Abstract:
An apparatus for detecting a packet end point in a wireless communication system includes: a signal reception unit configured to receive a signal from an outside, convert the signal into a baseband signal, perform analog-digital conversion of the baseband signal, and perform a digital front end; a storage unit configured to store an output of the signal reception unit; a frequency offset estimation unit configured to estimate a frequency offset using the output of the storage unit; a frequency offset correction unit configured to compensate for a frequency error using the estimated frequency offset; an offset correlation unit configured to calculate correlation of the frequency offset and a cyclic prefix; an auto-correlation operation unit configured to calculate auto-correlation of the cyclic prefix; and a packet end detection unit configured to check a packet end point using the auto-correlation.
Abstract:
Disclosed are an apparatus and a method for supporting access for a multi user to perform communication through a multi node by efficiently using a multi channel in a communication system of a multi user environment having the multi node, in which bands usable by STAs that intend to access an access point are searched in a multi channel; a transmission band for packet transmission is determined in the searched usable bands; and access to the access point is supported through the determined transmission band, and the transmission band is determined by performing ad-hoc through an ad-hoc media access control (MAC) protocol in the searched usable bands.
Abstract:
A method for adaptively performing power saving in a station of a wireless communication system includes: receiving first power-save capability information from an AP, the first power-save capability information containing information on power-save schemes supported by a MAC layer of the AP; transmitting second power-save capability information to the AP in response to the first power-save capability information, the second power-save capability information containing information on power-save schemes supported by a MAC layer of the station; transmitting power-save policy information, into which properties of traffics used in the station are reflected, to the AP; and performing a power-save function while interworking with the MAC layer of the station, according to the power-save policy information based on a predetermined power-save scheme.
Abstract:
Provided a method for simultaneously transmitting data frames to a plurality of STAs in a multi-user based wireless communication system. The method includes: requesting sounding or feedback for the plurality of STAs by using a first control information frame containing first group information; receiving responses to the sounding or feedback request; reconfiguring the plurality of STAs composing the first group into a plurality of second groups on the basis of the responses such that the sum of maximum transport streams of the respective STAs composing one group becomes equal to or less than the maximum number of streams transmitted by an AP; transmitting a second control information frame containing second group information on the respective second groups to the plurality of STAs composing the first group; and transmitting data frames by using the second group information.
Abstract:
A power control apparatus of a wireless communication terminal providing a voice over internet protocol (VoIP) service in a wireless communication system includes a user interface unit configured to include a voice CODEC using in the VoIP service, a controller configured to be connected to the user interface unit, include predetermined application programs including a VoIP application program, and control signaling for setting up a VoIP call and canceling a VoIP call, and a medium access control (MAC) processor configured to perform a medium access control function and include a timer unit for beginning a unscheduled-service period (U-SP) by receiving a VoIP call setup signal and a VoIP call cancel signal from the controller.
Abstract:
A method for controlling channel access performed by an access point (AP) in a wireless system is provided. The method includes: receiving at least one frame from at least one station (STA), respectively, for a specific time period, each frame including information on a contention window (CW) used when the frame is transmitted; processing information one at least one CW for each STA; determining whether to control the channel access based on the processed information on the CW; selecting an abnormal STA candidate group if it is determined that the channel access control is performed; and controlling the channel access to each STA included in the abnormal candidate STA group.