Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for managing transmit power in a television white space (TVWS) network. By managing transmit power as described herein, medium re-use may be improved in such a network, and unfair usage problems may be alleviated. One example method generally includes receiving a request message comprising an indication of a modulation and coding scheme (MCS) for transmitting data frames to be received, determining a link margin based on the MCS, and transmitting a response message with an indication of the link margin. Another example method generally includes determining a MCS for transmitting data frames and transmitting a request message comprising an indication of the MCS.
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for managing transmit power in a television white space (TVWS) network. By managing transmit power as described herein, medium re-use may be improved in such a network, and unfair usage problems may be alleviated. One example method generally includes receiving, from an apparatus, a message with an indication of a highest transmit power used by the apparatus for transmitting data frames; and determining that the apparatus is a dominant interferer based, at least in part, on the highest transmit power. Another example method generally includes receiving, from an apparatus, a control or management message with a first indication of a first transmit power used by the apparatus for transmitting data frames; and determining that the apparatus is a dominant interferer based, at least in part, on the first transmit power.
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for verification signaling, for example, in wireless communications in a television white space (TVWS) network.
Abstract:
Certain aspects of the present disclosure relate to techniques for supporting television white space (TVWS) communication. In an aspect of the present disclosure, a low-rate TVWS enabler (Mode II wireless communication device) may provide initial enablement for all Mode I devices (e.g., access points and user terminals), as well as it may transmit a contact verification signal (CVS) on a regular basis to keep the Mode I devices enabled for the TVWS communication.
Abstract:
White space signals are differentiated from licensed ATSC signals through modification of a waveform of the white space signal. White space signals may be modified by shifting the ATSC-compatible waveform so that the pilot frequency of the white space signal is at a location outside of the frequency range associated with the pilot frequency in a licensed ATSC signal or embedding a watermark signal into said ATSC-like white space signals. White space device transmitters generate the signals with these modifications and white space receivers are equipped to detect whether a pilot exists in the standard licensed pilot frequencies. Based on these differences, white space devices can better operate without interfering with licensed ATSC transmission. Additionally, the modification techniques may be used to embed data in the white space signal that may be used to communicate connection data or networking data to other white space devices.
Abstract:
Multichannel dynamic frequency selection in wireless networks begins with an access point for a wireless network broadcasting a list of unused channels that are available for communication within the area served by the access point. The various access terminals within this service area receive the broadcast and measure various interference characteristics of each of the channels in the list. The access terminals then send this interference information to the access point, which compiles a matrix of interference information that is associated with the quality of each signal as related to each access terminal. Using this information, the access point selects the appropriate channels to serve the most number of access terminals at the highest possible channel qualities.
Abstract:
Techniques for use in contending for a portion of a television channel spectrum are disclosed. In some instances, a back-off value is used to decide whether a contender's contention number will be transmitted when the contention channel is free, and the back-off value is determined based on the contention number. In some instances, a contender monitors the contention channel and withdraws from contention if it detects from the contention channel that a higher priority contender is in contention.
Abstract:
A signaling arrangement and method for use in a wireless local area network managed by a system manager include a reader for electro-optically reading bar code symbols. The system manager verifies that a symbol has been successfully read and sends an acknowledgment signal by wireless, radio frequency transmission to a remote indicator operative for generating an alert signal noticeable to a user.
Abstract:
A method and apparatus for aligning a scan pattern to a two dimensional bar code having parallel rows of codewords. The two dimensional bar code is scanned with a scanning pattern oriented such that a plurality of lines thereof cross the bar code rows. A determination if there is a non-zero angle between at least one of the plurality of lines and the rows by decoding codewords in rows intersected by the at least one line is made and the orientation of the scanning pattern is adjusted to reduce the absolute value of the angle.
Abstract:
Combining scan fragments of a bar code symbol. Each fragment is represented by a series of values, with each value representing the width of an element in the fragment. The alignment at which the fragments are combined is determined by shifting the alignment of the fragments over a range of positions, and determining for each position an index of the overall degree of similarity between the aligned values of the two fragments at that position. The fragments are combined at an alignment that produces a relatively larger index value (e.g., that maximizes the index). The index of overall similarity may be a correlation factor representing the degree of correlation, at each tested alignment, between the series of values representing each fragment. The index of overall similarity may alternately be the number of consecutive matching elements. At each position, the values in each series are compared and the number of consecutive values that match within a preselected tolerance is determined.