Abstract:
A method and system for closed loop power control in a wireless communication network. A received signal is despread. The signal power of the despread received signal is estimated. The noise power of the despread received signal is estimated. Estimating the noise power includes multiplying the despread received signal with an orthogonal noise code to cancel the received signal, accumulating the multiplied despread received signal over one frame and determining a signal-to-noise ratio of the received signal at least in part by dividing the estimated signal power by the estimated noise power. A reverse power control bit is determined based on the determined signal-to-noise ratio.
Abstract:
The power efficiency of a transmitter is optimized through control of a selected aspect of the transmitter, for instance, a parameter of a power amplifier within the transmitter. The control of the aspect is based on a generated indication of desired average transmitted power. Based on this indication, a hardware path produces a first adjustment signal and a software path produces a second adjustment value, where the second adjustment value has been previously determined to correspond to the particular indication of desired average transmitted power through calibration. A difference between a first adjustment value, which is based on the first adjustment signal, and the second adjustment value is used to produce a correction signal, which is used to alter the first adjustment signal and produce a signal to control the selected aspect of the transmitter.
Abstract:
In instant communications over a wireless network, a user from a private organization sends the request for instant communications communication through a private server controlled by the private organization. The private server sets up a private account with the wireless carrier and the user communicates via the private account.
Abstract:
The invention is a CDMA system which achieves improved performance by virtue of being adaptive to the speed of each mobile unit in the system. A speed estimator for each mobile unit can be located in the mobile unit itself and/or in the base station. The speed estimate is used to modify a variety of parameters within processing fingers in the mobile unit and in the base station, including the accumulation period of certain accumulators and the time constant for loop filters. The speed estimate also influences assignment, by a control unit, of path delays to respective processing fingers for despreading. Furthermore, the speed estimate is used by the control unit to decide whether or not finger outputs are to be combined by a diversity combiner in the receiver. In addition, the speed estimate is used to optimize the closed-loop power control target and the energy of a transmitted pilot. The speed estimate is also used for allocation of pooled finger and searcher resources, as well as data transmission rate negotiation and interleaver/deinterleaver length configuration.
Abstract:
A method of determining the actual transmission rate in a variable transmission rate communication system is provided, using error detection metrics. The received symbols are decoded assuming each possible rate, and then re-encoded to determine a symbol error rate for each possible rate. The possible transmission rates are then narrowed down using a simple measure of the likelihood of error, such as the CRC status determined for each rate. The symbol error rates are compared to either make a confident decision as to the actual transmission rate or to erase the frame. Rather than compare the values of the symbol error rates with predetermined thresholds, the method compares the differences between the symbol error rates for each possible rate with predetermined thresholds. This results in fewer erasures, even if the symbol error rates are low due to high signal to noise ratios.
Abstract:
A peak power regulator is disclosed that functions within a Code Division Multiple Access (CDMA) transmitter to reduce peak power spikes within baseband signals while maintaining the average output power consistent with the average input power, controlling the out-of-band emissions, and maintaining the in-band signal quality within an acceptable degradation. In-phase and quadrature baseband signals are input to a delay block and an envelope magnitude predictor within the peak power regulator. The envelope magnitude predictor outputs an estimate for the magnitude of the envelope that will be generated when the inputted baseband signals are modulated. This estimate is input to a multiplier that generates a ratio by dividing the estimate by a maximum acceptable envelope magnitude. The ratio is subsequently input to a mapping table that outputs a scaling factor sufficient for reducing peak power spikes. The scaling factor is subsequently input to an optional mean power regulator that generates an instantaneous gain value sufficient to maintain the average output power level at the average input power level. This gain value is applied to two multipliers that are also input with delayed versions of the in-phase and quadrature baseband input signals. The outputs from these two multipliers, after being filtered within lowpass filters to remove out-of-band emissions caused by the scaling, are output from the peak power regulator. These peak power reduced outputs have any peak power spikes scale reduced while maintaining the average power constant.
Abstract:
In many applications such as automobiles on busy highways, if a lot of vehicles on road are equipped with Doppler radars to help improve driving safety, no matter human-driven or auto-driven, if the radars use same frequency band, avoiding interference between them is a hard task. Assigning distinct frequencies is one of the solutions, however not only it wastes expensive spectrum resource, but also the task itself to dynamically assign frequency to vehicles randomly come together becomes a hard one to do. The disclosed invention of Doppler group radar will allow radar devices to work together using shared frequency band without interfering one another, without sacrificing performance, and without much increase in costs.
Abstract:
In many applications such as automobiles on busy highways, if a lot of vehicles on road are equipped with Doppler LIDARs to help improve driving safety, no matter human-driven or autonomous-driven, when multiple LIDARs are simultaneously illuminating an object, the LIDARs signals will interfere with each other. Avoiding interference between them is a hard task. The disclosed invention of “Doppler group LIDAR” will allow LIDAR devices of this kind to inherently work together in “physical layer” without interfering one another, without sacrificing performance, and without having to rely on higher layer protocols to achieve these goals, so that all LIDARs of this kind interoperate easily and reliably.
Abstract:
A mixed reality system and method for determining spatial positions of dental instruments without having a fixed intra oral reference point is disclosed. An intra-oral image sensor-based positioning device including at least two cameras is provided to sense and track the movements of dental instruments being used. The three-dimensional coordinates relating to the movement and orientation of the dental instruments are obtained for real time or delayed use in a mixed reality environment.
Abstract:
For people with reduced physical ability such as elderly people, risks of bodily injuries are high. Once an injury occurs, a victim suffers, sometimes a victim even may not survive. To help such people, a personal wearable device without adding much inconvenience in normal life is disclosed. This personal wearable device is able to detect dangerous conditions and automatically deploy airbags when needed to prevent or mitigate potential bodily injuries.