Abstract:
A communication apparatus for a continuous phase modulation signal. The communication apparatus includes a first processing unit configured to generate first information of the continuous phase modulation signal using first symbol data; a symbol converting unit configured to convert the first symbol data into second symbol data or convert the second symbol data into the first symbol data; a symbol storage unit configured to store the second symbol data; a second processing unit configured to second information of the continuous phase modulation signal using the second symbol data stored in the symbol storage unit; a third processing unit configured to generate third information of the continuous phase modulation signal using a modulo operation of an integer related to a modulation index; and an output unit configured to add an output from the third processing unit and an output from the first processing unit and generate the continuous phase modulation signal.
Abstract:
The video data output from the dot-inversion driver is re-arranged in the present invention. According this re-arranged method, the video data output from the even data lines or odd data lines is delayed for one scan line scan time. Then, the re-arranged video data are applied to the liquid crystal display structure whose thin film transistors connected with the same scan line are arranged in alternatingly up-down form to store row-inversion driving data in the pixel region.
Abstract:
A reference-current optimizing apparatus of a Reference Junction Double Relaxation Oscillation SQUID (RJ-DROS) with a signal SQUID and a reference junction for detecting a magnetic flux signal is provided. The reference-current optimizing apparatus includes a voltage controller for converting a digital signal into an output voltage; a buffer for receiving the output voltage and preventing a current generated in the RJ-DROS from flowing inversely into the reference-current optimizing apparatus; a low-pass filter for eliminating a noise mixed in an output voltage of the buffer; and a resistor for converting an output voltage of the low-pass filter into a current and providing both ends of the reference junction with the current. The reference-current optimizing apparatus may also include a preamplifier having a number of junction bipolar transistors.
Abstract:
A biomagnetic field measurement apparatus according to the present invention comprises: a head part provided with SQUID sensors (Superconducting Quantum Interference Device) for measuring a magnetocardiogram, the sensors being arranged in a row in a right and left direction at a lower end portion of the head part and being spaced apart by a predetermined space, and a non-magnetic liquid coolant container for cooling the SQUID sensors; an electronic circuitry part for controlling the SQUID sensors and measuring a signal; a signal processing software part for acquiring and storing the signal detected by the electronic circuitry part to a PC, calculating the signal and thus transforming the signal to a magnetic signal or a current signal, then mapping and displaying the transformed signal; and a bed part made of a non-magnetic material, mounted at a lower side of the head part to be spaced apart therefrom and provided with a platy sliding bed for measuring a magnetocardiogram by using the SQUID sensors of the head part at a state that a man to be measured is laid thereon, a sliding rail for allowing the sliding bed to move thereon in a front and rear direction, an up and down moving device for moving the sliding bed, for adjusting a measuring position of the man to be measured, in an up and down direction for adjusting the position of the SQUID sensors of the head part, a right and left moving device for moving the sliding bed in a right and left direction, and a front and rear moving device for moving the sliding bed in a front and rear direction by a predetermined space.The biomagnetic field measurement apparatus according to the present invention has advantages that since SQUID sensors are arranged in a row and a magnetocardiogram is measured by moving the bed in a predetermined space, it is not necessary for the high-priced SQUID sensors to be provided a lot in comparison with a conventional biomagnetic field measurement apparatus, and thus the apparatus is inexpensive, structurally simple and able to be downsized, a space taken up can be reduced and maintenance thereof is facilitated.
Abstract:
The present invention relates to a method of controlling the characteristics of a double relaxation oscillation SQUID having a reference junction. In the method of controlling characteristics of a reference junction-type double relaxation oscillation SQUID (RJ-DROS) having a signal SQUID and a reference junction, a reference DC current flows through the reference junction in order to control the characteristics of the DROS. A modulation width of an averaged relaxation voltage, which reacts to a magnetic flux, may be controlled at the reference junction. An amount (modulation depth) of an averaged relaxation voltage, which reacts to a magnetic flux, may be controlled at the reference junction. An amount of an operation application current may be controlled at the reference junction. Accordingly, the reference current of the reference junction can be changed by causing the current to flow through the reference junction. A magnetic flux-voltage characteristic and a transfer coefficient of the DROS can be easily controlled externally and the DROS can operate stably.