Abstract:
An ultraviolet (“UV”) emission device may emit energy towards a movable surface of a conveyor system. A housing of the UV emission device may attach to a frame of the conveyor system. A lateral edge of the housing may extend across the moveable surface. The housing and a portion of the moveable surface may be inclined with respect to the frame. A barrier bracket of the UV emission device may support an absorptive barrier along the lateral edge, the absorptive barrier configured to contact the moveable surface. In a first position of the barrier bracket, the absorptive barrier contacts the moveable surface and the barrier bracket activates an interlock switch. In a second position of the barrier bracket, the barrier bracket deactivates the interlock switch. Responsive to deactivation of the interlock switch, a controller may provide a control signal to decrease power to the UV energy emission element.
Abstract:
Certain aspects involve lighting systems relating to control of light fixture output intensity and color temperature. For instance, an input device of the lighting system includes a first selector element communicatively coupled to a driver of a light-emitting diode lighting device across a power cable. The power cable provides a transmission path of power and a control signal between the input device and the driver of the light-emitting diode lighting device. The first selector element is able to control a lumen output of the light-emitting diode lighting device when in a lumen control mode and to control a correlated color temperature output of the light-emitting diode lighting device when in a correlated color temperature control mode. The input device also includes a second selector element that transitions the first selector element between the lumen control mode and the correlated color temperature control mode.
Abstract:
A lighting fixture for powering multiple LED groups to generate a selectable color temperature. The lighting fixture provides varying amounts of power to each group of LEDs to achieve a selected color temperature. Current from a driver may be divided between the LED groups based on a selected operational state, which is selected using a switch or other configurable input. The operational states may turn the LED groups on or off or may control an amount of current received by the LED groups. In some configurations, all of the LED groups are always at least partially powered.
Abstract:
A system includes a luminaire having a light source, a lighting control device to control a light output and operation of the light source in an area of the luminaire, and a sound transducer integrated on a surface of a panel of the luminaire. The sound transducer responds to vibration of the panel to detect incoming audio waves. An audio front end device includes an audio coder responsive to analog signals from the sound transducer, and is coupled to an output of the sound transducer. The lighting control device includes programming that configures a processor to control the audio front end device to receive the analog signals from the sound transducer and provide a digital output signal, process the digital output signals to generate a responsive result that is supplied to the lighting control device in the area of the luminaire.
Abstract:
An LED light engine includes a housing, one or more LEDs mounted on a printed circuit board and a retention feature engaged with the housing. The retention feature includes one or more of a torsion spring and a friction clip and is configured to engage an inside wall of a recessed lighting can, thereby retaining the LED light engine within the can. The LED light engine may also include a reflector and a lens retained within the housing, with the housing, reflector and lens forming a sealed chamber for protecting the LED components from external environmental conditions. Methods for retrofitting an existing recessed downlight fixture with an LED light engine include removing the existing light engine from the recessed lighting can and inserting an LED light engine into the can.
Abstract:
A single board light engine includes an AC to AC step driver that selectively powers multiple LED segments by controlling tap points between the LED segments as the input voltage goes from zero crossover to maximum voltage and returns to zero crossover. The step driver may power a first LED segment, a second LED segment, both the first and second LED segments, or none of the LED segments depending upon the input voltage level. The LEDs within an LED segment may share a characteristic that differs from a characteristic shared by LEDs in another segment, which allows the LED fixture to provide a variety of lighting effects.
Abstract:
A single board light engine includes an AC to AC step driver that selectively powers multiple LED segments by controlling tap points between the LED segments as the input voltage goes from zero crossover to maximum voltage and returns to zero crossover. The step driver may power a first LED segment, a second LED segment, both the first and second LED segments, or none of the LED segments depending upon the input voltage level. The LEDs within an LED segment may share a characteristic that differs from a characteristic shared by LEDs in another segment, which allows the LED fixture to provide a variety of lighting effects.
Abstract:
Battery charge function may be in an LED driver which eliminates the duplication of line interface circuitry. A single line interface circuit provides the input power conversion for both the battery charge function and normal operation of the LED driver. During a loss of power, the LEDs may be controlled using power from the battery backup module.
Abstract:
A single board light engine includes an AC to AC step driver that selectively powers multiple LED segments by controlling tap points between the LED segments as the input voltage goes from zero crossover to maximum voltage and returns to zero crossover. The step driver may power a first LED segment, a second LED segment, both the first and second LED segments, or none of the LED segments depending upon the input voltage level. The LEDs within an LED segment may share a characteristic that differs from a characteristic shared by LEDs in another segment, which allows the LED fixture to provide a variety of lighting effects.
Abstract:
Retrofit light fixtures suitable for installation without tools. One or more spring bands deform as the fixture is forced through a ceiling opening and resume their preloaded shape to hold the fixture in place. Some embodiments may be installed in round ceiling openings and may utilize LED light sources.