Abstract:
Various embodiments disclosed herein provide for a compressed UE capability message that can indicate to a mobile network the various capabilities of the UE. In particular, the carrier aggregation and dual connectivity capabilities are compressed as disclosed herein. In traditional implementations, each carrier aggregation and dual connectivity combination and implementation that is supported is explicitly indicated in the message. As disclosed herein, rather than listing explicit combinations, the UE capability message can be compressed by instead listing boundary values of several different parameters which can be used by the network to derive the carrier aggregation and dual connectivity combinations. The UE capability message can also list the boundary values for LTE (Long Term Evolution), NR (New Radio, or 5G), and Dual Connectivity separately within the message to reduce ambiguity.
Abstract:
Aspects of the subject disclosure may include, for example, obtaining configuration update messages received from neighbor cells of a serving cell of a wireless network, wherein the configuration update messages include dual connectivity capability information of the neighbor cells. The neighbor cells are ranked according to the dual connectivity capability information resulting in a dual connectivity ranking. A target cell of the neighbor cells is selected according to the dual connectivity ranking and a dual connectivity capability of a mobile device, and a dual connectivity service is established according to the dual connectivity ranking. The dual connectivity service includes exchanging user plane messages between the mobile device, a master cell and a secondary cell of the wireless network. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure include, for example, identifying a primary serving cell and a secondary serving cell, wherein the primary serving cell facilitates one of attachment, re-attachment or mobility, or any combination thereof, of a mobile device in association with coordination of a wireless service between the primary serving cell, the secondary serving cell and the mobile device. A latency value associated with a message exchange is determined between the primary and secondary serving cells via a messaging interface, and compared to latency requirements, which correspond to a group of mobile service features. A mobile service feature of the group is associated with the wireless service based on the comparison. The wireless service includes a coordinated exchange of wireless signals between the primary serving cell and the mobile device and between the secondary serving cell and the mobile device based on the mobile service feature. Other embodiments are disclosed.
Abstract:
Concepts and technologies are described herein for traffic steering across radio access technologies and radio frequencies utilizing cell broadcast messages. According to one aspect disclosed herein, a base station can collect load information of the base station. The base station can also generate a cell broadcast message that includes the load information. The base station can also send the cell broadcast message to a target mobile device. The target mobile device can be configured to determine, based at least in part upon the load information, which radio access network of a plurality of radio access networks to connect to.
Abstract:
A user equipment device cell reselection procedure includes scaling factors that are based on cell-types of a camping cell and neighbor cells and a mobility state of the user equipment device. The scaling factors can be received in a system information block message. During an idle mode cell selection/reselection procedure, the user equipment device can apply the appropriate scaling factor to the hysteresis during the cell selection/reselection procedure.
Abstract:
A mobile device mobility state is included in device reporting to a radio access network for mobility event and load balancing purposes. Respective load conditions and respective coverage areas of a first set of devices of a first network and a second set of devices of a second network are analyzed. In addition, a mobility state of a mobile device, a first signal strength associated with the first set of devices, and a second signal strength associated with the second set of devices are also analyzed. The mobility state is a function of a movement pattern of the mobile device and a speed at which the mobile device is being moved. Network traffic of the mobile device is routed to a set of network devices selected from the first set of devices and the second set of devices, as a result of the analysis.
Abstract:
Concepts and technologies are described herein for traffic steering across cell-types. According to one aspect disclosed herein, a mobile device enables radio access network (“RAN”) selection across multiple cell-types, including, but not limited to, macro cells, metro cells, femto cells, pico cells, and the like, based upon network conditions, local device information, and/or other information such as policies and user profiles. The local device information can include, but is not limited to, mobility state information, performance measurement information, battery utilization information, channel quality information, and user overrides.
Abstract:
Aspects of the subject disclosure include, for example, identifying a primary serving cell and a secondary serving cell, wherein the primary serving cell facilitates one of attachment, re-attachment or mobility, or any combination thereof, of a mobile device in association with coordination of a wireless service between the primary serving cell, the secondary serving cell and the mobile device. A latency value associated with a message exchange is determined between the primary and secondary serving cells via a messaging interface, and compared to latency requirements, which correspond to a group of mobile service features. A mobile service feature of the group is associated with the wireless service based on the comparison. The wireless service includes a coordinated exchange of wireless signals between the primary serving cell and the mobile device and between the secondary serving cell and the mobile device based on the mobile service feature. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, transmitting a first message to a first network node, wherein the first message identifies a total count of resources available to a processing system across a plurality of carriers, transmitting a second message to a second network node that causes the second network node to obtain the total count of resources from the first network node, connecting the processing system to the first network node to receive first services in accordance with a first portion of the total count of resources, and connecting the processing system to the second network node to receive second services in accordance with a second portion of the total count of resources. Other embodiments are disclosed.
Abstract:
Data can be sent simultaneously on the data links between long-term evolution (LTE) and new radio (NR) for dual connectively. However, a mobile device can indicate its capabilities to the network. The mobile device capabilities can comprise the number of total multiple-in multiple-out (MIMO) layers that the mobile device can support. Because different sectors or markets can have different spectrums that can make use of an increased or decreased number of layers, then assessing the MIMO layer capabilities of the mobile device can allow the network to dynamically adjust the LTE side and the NR side capabilities to optimize network utilization.