Abstract:
In accordance with some embodiments, a computer-implemented method is performed at a portable electronic device with a touch screen display. The method can include: displaying graphics on the touch screen display, detecting a finger contact on the touch screen display, and, in response to the detected finger contact, inserting an insertion marker in the graphics at a first location. The method can further include detecting a finger movement on the touch screen display and, irrespective of initial distance from finger to insertion marker on the touch screen display, moving the insertion marker in accordance with the detected finger movement from the first location to a second location in the graphics.
Abstract:
This relates to an event sensing device that includes an event sensing panel and is able to dynamically change the granularity of the panel according to present needs. Thus, the granularity of the panel can differ at different times of operation. Furthermore, the granularity of specific areas of the panel can also be dynamically changed, so that different areas feature different granularities at a given time. This also relates to panels that feature different inherent granularities in different portions thereof. These panels can be designed, for example, by placing more stimulus and/or data lines in different portions of the panel, thus ensuring different densities of pixels in the different portions. Optionally, these embodiments can also include the dynamic granularity changing features noted above.
Abstract:
The detection of an orientation of a stylus relative to a touch sensitive surface is disclosed. In one example, a touch image of the stylus tip and the hand used to grasp the stylus can be captured by the touch sensor panel and analyzed to determine the stylus' orientation relative to the surface of the touch sensor panel. The analysis can include estimating the size of the user's hand, determining the distance away from the user's hand at which the stylus tip makes contact with the touch sensor panel, and determining an angle of tilt based on the estimated size of the user's hand and the distance between the tip and the user's hand.
Abstract:
This relates to a method of extrapolating proximity information to generate a border column or row of touch nodes (also known as touch pixels) and then fitting an ellipse to the contact patch including the extrapolated border touch nodes. Additionally, a contact can be identified as a thumb based on both its major axis and its distance to an edge of the touch sensing surface.
Abstract:
An image jaggedness filter is disclosed that can be used to detect the presence of ungrounded objects such as water droplets or coins, and delay periodic baseline adjustments until these objects are no longer present. To do otherwise could produce inaccurate normalized baseline sensor output values. The application of a global baseline offset is also disclosed to quickly modify the sensor offset values to account for conditions such as rapid temperature changes. Background pixels not part of any touch regions can be used to detect changes to no-touch sensor output values and globally modify the sensor offset values accordingly. The use of motion dominance ratios and axis domination confidence values is also disclosed to improve the accuracy of locking onto dominant motion components as part of gesture recognition.
Abstract:
The suppression of errant motion regarding a mouse is disclosed. Mouse and touch information can be integrated to determine whether a gesture made on a surface of the mouse is errant, such as when a mouse is being moved and the fingers holding the mouse inadvertently move on the mouse surface. A gesture motion that is small relative to mouse motion can be considered errant and therefore at least partially suppressed, while a gesture motion that is large relative to mouse motion can be considered an intended gesture and therefore processed. Similarly, mouse and touch information can be integrated to determine whether a mouse motion is errant, such as when a robust gesture being made on the mouse surface inadvertently moves the mouse. A mouse motion that is small relative to gesture motion can be considered errant and therefore at least partially suppressed, while a mouse motion that is large relative to gesture motion can be considered an intended motion and therefore processed.
Abstract:
The use of multiple stimulation frequencies and phases to generate an image of touch on a touch sensor panel is disclosed. Each of a plurality of sense channels can be coupled to a column in a touch sensor panel and can have multiple mixers. Each mixer in the sense channel can utilize a circuit capable generating a demodulation frequency of a particular frequency. At each of multiple steps, various phases of selected frequencies can be used to simultaneously stimulate the rows of the touch sensor panel, and the multiple mixers in each sense channel can be configured to demodulate the signal received from the column connected to each sense channel using the selected frequencies. After all steps have been completed, the demodulated signals from the multiple mixers can be used in calculations to determine an image of touch for the touch sensor panel at each frequency.
Abstract:
This is related to user input devices that accept complex user input including a combination of touch and push (or pick) input. The invention provides for selective ignoring or rejection of input received from such devices in order to avoid interpreting unintentional user actions as commands. Furthermore, some input signals can be modified. The selective rejection or modification can be performed by the user interface device itself or by a computing device that includes or is attached to the user interface device. The selective rejection or modification may be performed by a module that processes input signals, performs the necessary rejections and modifications and sends revised input signals to higher level modules.
Abstract:
The use of multiple stimulation frequencies and phases to generate an image of touch on a touch sensor panel is disclosed. Each of a plurality of sense channels can be coupled to a column in a touch sensor panel and can have multiple mixers. Each mixer in the sense channel can utilize a circuit capable generating a demodulation frequency of a particular frequency. At each of multiple steps, various phases of selected frequencies can be used to simultaneously stimulate the rows of the touch sensor panel, and the multiple mixers in each sense channel can be configured to demodulate the signal received from the column connected to each sense channel using the selected frequencies. After all steps have been completed, the demodulated signals from the multiple mixers can be used in calculations to determine an image of touch for the touch sensor panel at each frequency.
Abstract:
Techniques for identifying and discriminating between different types of contacts to a multi-touch touch-screen device are described. Illustrative contact types include fingertips, thumbs, palms and cheeks. By way of example, thumb contacts may be distinguished from fingertip contacts using a patch eccentricity parameter. In addition, by non-linearly deemphasizing pixels in a touch-surface image, a reliable means of distinguishing between large objects (e.g., palms) from smaller objects (e.g., fingertips, thumbs and a stylus) is described.