Abstract:
As viewed for each processing unit in HS processing, a processing unit width is more than 1 pixel, so that threshold arrangement corresponding to a target quality of an image intended by a dither matrix is kept while a possibility of avoiding the zero number of dots from being generated can be enhanced. Moreover, the threshold arrangement is kept while a possibility of generating the same number of dots in processing units can be enhanced. Consequently, the threshold arrangement corresponding to a predetermined target quality of an image intended by a dither matrix is kept while it is possible to reduce occurrence of an uneven density caused by the HS processing. Thus, it is possible to prevent the threshold arrangement from being limited by the HS according to the degree of the reduction.
Abstract:
An image processing method includes performing an object identification process on a plurality of image data, generating layout data on the basis of at least some of the plurality of image data subjected to the identification process and template data, controlling displaying of a layout image on a display on the basis of the layout data, acquiring setting information relating to a priority of a particular object, and extracting a replacement candidate image in response to a request for replacing an image in the displayed layout image. In extracting a replacement candidate image, the replacement candidate image is extracted on the basis of the setting information relating to a priority.
Abstract:
An object of the present invention is to implement a bit pattern capable of specifying a plurality of colors while storing information on a shape. The present invention is an image processing apparatus that converts image data in a bitmap format into data including a bit pattern, the apparatus including: a creation unit configured to create, based on pixel values of pixels within an image area of a predetermined size within the image data, the bit pattern storing shape information on the image area, which specifies to which of a plurality of kinds of pixel each pixel within the image area corresponds, and color information on the image area, which specifies a number of colors in accordance with a kind of pixel specified by the shape information, and the number in accordance with a kind of pixel specified by the shape information is smaller than a total number of pixels within the image area.
Abstract:
A technique for laying out images included in a plurality of image groups into which a plurality of images is divided in such a way that an image including an object of a type desired by a user is included in each of the image groups. A user instruction related to the object type is received, and a plurality of images is divided into image groups so that an image including an object corresponding to the object type is included in each of the plurality of image groups.
Abstract:
A control method for an image processing apparatus that generates a layout image by arranging an image in a template includes making an evaluation of a first image data group acquired from acquired moving image data based on a first evaluation axis and making an evaluation of a second image data group acquired from acquired still image data based on a second evaluation axis different from the first evaluation axis.
Abstract:
An image processing method is provided for acquiring additional information from image information obtained by shooting a printed product on which the additional information is multiplexed by at least one of a plurality of different multiplexing methods, the method comprising: attempting decoding of the additional information from the image information by a plurality of different decoding methods corresponding to the plurality of different multiplexing methods; and outputting, by a unit, the additional information successfully decoded.
Abstract:
Image ink data is generated which represents the absence of ejection of ink corresponding to pixels for which text ink data represents the ejection of ink.
Abstract:
An image processing apparatus includes an acquiring unit which acquires first image data indicating a first gray-scale value of an image having a first attribute and a second image data indicating a second gray-scale value of an image having a second attribute that is different from the first attribute, a correcting unit which corrects the first gray-scale value and the second gray-scale value acquired by the acquiring unit on basis of information on an ejection characteristic of a discharge head to different extents, the discharge head ejecting liquid to be used for forming the first image and the second image on a recording medium with dots.
Abstract:
An image processing apparatus for generating dot data to form an image by forming dots on a recording medium includes a receiving unit, a first, second, and third generating unit, and a correcting unit. The receiving unit receives first and second image data included in image data. The first generating unit generates, per the first image data, first ink color data representing a multi-valued signal value corresponding to an ink color. The second generating unit generates, per the second image data, second ink color data representing a multi-valued signal value corresponding to an ink color. The correcting unit corrects the signal value represented by the generated first and second ink color data. The third generating unit generates, per the first and second ink color data of which the signal values have been corrected, the dot data representing existence of formation of dots to form an image.
Abstract:
An image processing apparatus includes a generation unit; wherein a first dither pattern and a second dither pattern have same threshold values that are set for same pixels in a first gradation range, and have different threshold values that are set for same pixels in a second gradation range that exceeds the first gradation range; and the generation unit sets a first threshold value for forming dots of the first dither pattern, and generates a first binary data according to whether or not a threshold value corresponding to a target pixel of the first dither pattern is included in the first threshold value, and sets a second threshold value for forming dots of the second dither pattern, and generates a second binary data according to whether or not a threshold value corresponding to a target pixel of the second dither pattern is included in the second threshold value.