摘要:
In a discrete tone system, a base station receives a transmission burst from a remote unit being installed that includes delay compensation pilot tones that are uniformly spread throughout the transmission bandwidth. The arrival time transmission burst is not synchronized with the other remote units transmitting to the base station. The base station measures the phase delay of each tone and calculates the delay of the remote unit from the slope of the line of phase angle versus tone frequency. The base station transmits a signal to the remote unit that includes the magnitude and direction of the delay, which allows the remote unit to adapt the timing of its transmission to be synchronized with the other remote units.
摘要:
Systems and methods are described for reducing an interference level associated with frequency drift in a wireless base station. The base station monitors an interference level in a frequency resource caused by a first frequency resource colliding with a second frequency resource. If the interference level is outside of an expected range, the base station adjusts a parameter of the base station such as a reference oscillator frequency to compensate for frequency drift. This method may be used in a femtocell wireless base station.
摘要:
Mobile communication data received at the sending based transceiver station via a radio frequency transmission is received a packet data network from a sending base transceiver station. The mobile communication data is forwarded to a base station controller via an interface defined at least in part by a third party base station controller vendor.
摘要:
Using a single logical base transceiver to serve multiple physical locations is disclosed. A call traffic associated with a call associated at a mobile network with an assigned timeslot of a logical base transceiver is received. A timeslot with which the call traffic is associated is remapped from the assigned timeslot to a serving timeslot being used at a serving physical base transceiver to facilitate the call, in the event the call traffic comprises inbound call traffic being sent into the mobile network from the serving physical base transceiver, or from the serving timeslot to the assigned timeslot in the event the call traffic comprises outbound call traffic being sent from the mobile network to the serving physical base transceiver.
摘要:
The high quality PCS communications are enabled in environments where adjacent PCS service bands operate with out-of-band harmonics that would otherwise interfere with the system's operation. The highly bandwidth-efficient communications method combines a form of time division duplex (TDD), frequency division duplex (FDD), time division multiple access (TDMA), orthogonal frequency division multiplexing (OFDM), spatial diversity, and polarization diversity in various unique combinations. The method provides excellent fade resistance. The method enables changing a user's available bandwidth on demand by assigning additional TDMA slots during the user's session.
摘要:
A method is provided for reducing the peak power level in a combination of orthogonal frequency division multiplexed (OFDM) tones. The method is particularly effective when the information to be communicated is digital data consisting of long patterns of “1”s or “0”s. The digital data of the message is combined with a scrambling vector before the data is modulated. The randomization of data patterns, in turn, leads to a more random combination of OFDM tone amplitude being transmitted. The message is recovered at the receiver by removing the scrambling vector. A table of scrambling vectors is maintained at the transmitters and receivers. The table pointer to select the scrambling vector is selected in response to the position of the message in the communication structure. An OFDM communication system using the above-described method is also provided.
摘要:
Using a single logical base transceiver to serve multiple physical locations is disclosed. A call traffic associated with a call associated at a mobile network with an assigned timeslot of a logical base transceiver is received. A timeslot with which the call traffic is associated is remapped from the assigned timeslot to a serving timeslot being used at a serving physical base transceiver to facilitate the call, in the event the call traffic comprises inbound call traffic being sent into the mobile network from the serving physical base transceiver, or from the serving timeslot to the assigned timeslot in the event the call traffic comprises outbound call traffic being sent from the mobile network to the serving physical base transceiver.
摘要:
A method of operating a communication system is disclosed. The method includes transmitting from a remote unit to a base station remote unit channel data. The remote unit channel is generated at the remote unit and includes data about a first portion of communication channels on which the call can be executed. The method also includes applying a channel selection method to the remote unit channel data and to base station channel data so as to select a communication channel from among the first portion of communication channels. The base station channel data is generated at the base station and includes data about a second portion of the communication channels. The method further includes executing a call on the selected communication channel.
摘要:
Controlling use of a mobile network element is disclosed. An indication is received that a mobile station associated with a mobile network is attempting to access the mobile network via a base transceiver station that (1) the mobile station is not authorized to use and (2) is located within a geographic area from which the mobile station is authorized to access the mobile network. The mobile station is prevented from accessing the mobile network via the base transceiver station.
摘要:
Systems and methods are described for segregating airlink resources in a wireless communication network by traffic type. When voice data and traffic data are sent simultaneously in a wireless network using a limited set of frequency resources, the data traffic can cause unacceptable interference in the voice traffic. Accordingly, transceivers share their voice traffic and data traffic demands and may allocate portions of an airlink resource into resource zones for exclusive use by voice traffic and data traffic. Within each resource zone, the transmission can be optimally managed for each traffic type, and interference between voice traffic and data traffic is reduced.