摘要:
A heater is provided. The heater includes a first material having a circular form and a first sheet resistively. The first material has a first radius of curvature. The heater also includes a second material having a circular form and a second sheet resistively. The second material is positioned adjacent to the first material and has a second radius of curvature. The first radius of curvature is greater than the second radius of curvature and the first sheet resistively is less than the second sheet resistively.
摘要:
A continuous inkjet printing apparatus is provided. The apparatus includes a printhead having a two-dimensional nozzle array with the two-dimensional nozzle array having a plurality of nozzles disposed such that a redundant nozzle pair is formed. A drop forming mechanism is positioned relative to the nozzles and is operable in a first state to form drops having a first volume travelling along a path and in a second state to form drops having a second volume travelling along the same path. A system applies force to the drops travelling along the path with the force being applied in a direction such that the drops having the first volume diverge from the path.
摘要:
An ink jet print head is formed of a silicon substrate that includes integrated circuits formed therein for controlling operation of the print head. The silicon substrate has a series of ink channels formed therein along the length of the substrate. An insulating layer or layers overlying the silicon substrate has a series of nozzle openings or bores formed therein along the length of the substrate and each nozzle bore communicates with a respective ink channel. A primary heater element is associated with each nozzle bore for asymmetrically heating the ink in the nozzle bore. A secondary heater element is provided upstream of the primary heater element and formed in the insulating layer to preheat ink just prior to entry of the ink into the nozzle bores.
摘要:
An inkjet printhead including a drop generator includes: a substrate including a surface; a chamber disposed on the surface of the substrate, the chamber including: an inlet having a first edge and a second edge, the second edge being separated from the first edge by an inlet width along an inlet width direction; and a chamber center, wherein the first edge and the second edge of the inlet are disposed on a same side of the chamber center relative to the inlet width direction.
摘要:
An inkjet printhead including a drop generator includes: a substrate including a surface; a chamber disposed on the surface of the substrate, the chamber including: an inlet having a first edge and a second edge, the second edge being separated from the first edge by an inlet width along an inlet width direction; and a chamber center, wherein the first edge and the second edge of the inlet are disposed on a same side of the chamber center relative to the inlet width direction.
摘要:
An apparatus and method for controlling temperature profiles in ejection mechanisms is provided. A heater includes a first resistor segment having an electrical resistivity, a second resistor segment; and a coupling segment positioned between the first resistor segment and the second resistor segment. The coupling segment has an electrical resistivity, wherein the ratio of the resistivity of the coupling segment to the resistivity of the first resistor segment is substantially zero. Alternatively, the first resistor segment has an electrical conductivity and the coupling segment has an electrical conductivity, wherein the electrical conductivity of the coupling segment is greater than the electrical conductivity of the first resistor segment.
摘要:
A liquid drop emitter, a method of mixing a liquid, and a method of printing are provided. The liquid emitter includes a structure defining a chamber adapted to provide a liquid having an orifice through which a drop of the liquid can be emitted. A drop forming mechanism is operatively associated with the chamber. A mixing mechanism is associated with the chamber and is operable to create a surface tension gradient on the liquid provided by the chamber such that the liquid flows without being emitted from the chamber.
摘要:
A method of ejecting a drop of fluid includes providing a fluid ejector. The fluid ejector includes a substrate, a MEMS transducing member, a compliant membrane, walls, and a nozzle. The substrate includes a cavity and a fluidic feed. A first portion of the MEMS transducing member is anchored to the substrate. A second portion of the MEMS transducing member extends over at least a portion of the cavity and is free to move relative to the cavity. The compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member, A second portion of the compliant membrane being anchored to the substrate. Walls define a chamber that is fluidically connected to the fluidic feed. At least the second portion of the MEMS transducing member is enclosed within the chamber. A quantity of fluid is supplied to the chamber through the fluidic feed. An electrical pulse is applied to the MEMS transducing member to eject a drop of fluid through the nozzle.
摘要:
A liquid ejector includes a substrate, a heating element, a dielectric material layer, and a chamber. The substrate includes a first surface. The heating element is located over the first surface of the substrate such that a cavity exists between the heating element and the first surface of the substrate. The dielectric material layer is located between the heating element and the cavity such that the cavity is laterally bounded by the dielectric material layer. The chamber, including a nozzle, is located over the heating element. The chamber is shaped to receive a liquid with the cavity being isolated from the liquid.
摘要:
An ink drop deflector mechanism is provided. The ink drop deflector mechanism includes an ink drop source and a path selection device operable in a first state to direct drops from the source along a first path and in a second state to direct drops from the source along a second path. The first and second paths diverge from the source. The mechanism also includes a system which applies force to drops travelling along at least one of the first and second paths with the force being applied in a direction so as to increase the divergence of the paths. The mechanism may include a gas source which generates a gas flow force that is applied in a direction that increases the divergence of the paths. The gas flow may be positioned between the first and second paths. The gas flow may be substantially laminar and interact with at least one of the first and second paths as the gas flow loses its coherence. The mechanism may also include a catcher with at least a portion of the system being positioned adjacent the catcher. Alternatively, at least a portion of the system may be integrally formed in the catcher.