Abstract:
A formation evaluation system reduces inversion matrixes used to determine formation properties, thereby increasing the memory management and processing efficiency of the evaluation system. NMR data is acquired from a wellbore and expressed mathematically by the system as a least squares solution to a linear system. The least squares solution is approximated using a numerical decomposition method and the evaluation system determines a formation property using the approximated least squares solution. Thereafter, a downhole operation may be planned, analyzed or conducted using the determined formation property.
Abstract:
In some embodiments, an apparatus and a system, as well as a method and article of manufacture, may operate to measure nuclear magnetic resonance relaxation times in a fluid. Further activity may include determining a viscosity of the fluid based on at least one ratio of the relaxation times, and operating a controlled device based on the viscosity. Additional apparatus, systems, and methods are disclosed.
Abstract:
Various embodiments include a method for determining a viscosity for heavy oil in a formation by obtaining viscosity data and nuclear magnetic resonance (NMR) relaxation time distribution data for a plurality of oil samples. A correlation is determined between a set of viscosity data for the plurality of oil samples and an NMR relaxation time geometric mean for the plurality of oil samples. An NMR relaxation time geometric mean intrinsic value is determined based on the correlation, apparent hydrogen index, and TE. Electromagnetic energy may then be transmitted into a formation and NMR relaxation time distributions determined for oil in the formation based on secondary electromagnetic field responses associated with the electromagnetic energy. A viscosity of the oil in the formation may then be determined based a correlation between the set of viscosity data and the NMR relaxation time geometric mean intrinsic value of the distribution data.
Abstract:
Downhole nuclear magnetic resonance (NMR) methods that utilize oleophilic nanoparticle may allow for differentiation of light oil and oil-based filtrates. For example, a method may involve drilling a wellbore penetrating a subterranean formation using an oil-based drilling fluid that comprises an oil base fluid and a plurality of oleophilic nanoparticles; performing a plurality of NMR measurements at a plurality of depths of investigation (DOI) of a near-wellbore portion of the subterranean formation; and producing an invasion profile of an oil-based drilling fluid filtrate into the near-wellbore portion of the subterranean formation based on the plurality of NMR measurements.
Abstract:
Described herein are systems and techniques for improving an accuracy of determinations made using data sensed in a wellbore or in a laboratory. Nuclear magnetic resonance (NMR) sensing devices may be used to collect data in a wellbore or lab. NMR sensing devices include a magnet (e.g., a permanent magnet or electromagnet) that provides a magnetic field that aligns the spins of protons in substances near the NMR sensing device. The magnetic field strength provided by the magnet of the NMR sensing device affects the sensitivity of the NMR sensing device and affects frequencies that the NMR sensing device effectively uses when the NMR sensing device operates. Systems and techniques of the present disclosure may measure concentrations of lithium in brine deposits when identifying particular brine deposits that include sufficient lithium concentrations to justify extracting lithium from those particular brine deposits.
Abstract:
System and methods of petrophysical modeling are disclosed. Measurements of formation parameters are received from one or more measurement tools during a first stage of a downhole operation within a reservoir formation. A correlation between each of the formation parameters and a target parameter of the formation is determined based on the measurements. One or more formation parameters are selected as input parameters for a symbolic regression model, based on the correlation. A symbolic regression model is trained to generate candidate formation models representing the target parameter, based on the selected input parameters. One or more optimizations are applied to the candidate models to determine a target petrophysical model of the formation. Values of the target parameter are estimated for at least one formation layer, based on the target petrophysical model. A second stage of the downhole operation is performed within the formation layer(s) based on the estimated values.
Abstract:
System and methods of petrophysical modeling are disclosed. Measurements of formation parameters along a planned path of a wellbore are received during a current stage of a downhole operation. A correlation coefficient between each of the formation parameters and at least one target parameter for the reservoir formation is determined based on the received measurements. Input parameters are selected from among the formation parameters for a symbolic regression model, based on the correlation coefficient calculated for each formation parameter. A symbolic regression model is trained to generate a target petrophysical model, based on the selected input parameters and the corresponding measurements received from the downhole tool. One or more properties of the formation are estimated for a subsequent stage of the downhole operation, based on the generated petrophysical model. The subsequent stage is performed along the wellbore, based on the one or more estimated properties of the reservoir formation.
Abstract:
A fluid extraction tool can include a body, a sealing pad extending from a portion of the elongated body, a container holding a selective permeability agent (SPA), and a device. The sealing pad can have an opening for establishing fluidic communication between an earth formation and the elongated body, an outer surface to hydraulically seal a region along an inner surface of a wellbore and a recess within the sealing pad establishing a fluid flow channel along the inner surface of the wellbore. The device can inject the SPA through an outlet of the body into the earth formation, and extract a formation fluid through the opening, wherein the formation fluid being collected is from the region along the inner surface of the wellbore sealed off by the sealing pad.
Abstract:
A nuclear magnetic resonance (NMR) tool for use in a subterranean region, the NMR tool comprising a magnet assembly to produce a magnetic field in a volume in the region, an antenna assembly to produce an excitation in the volume, and to receive NMR signals from the volume, and an acquisition system coupled to the antenna assembly and configured to acquire a first NMR signal using a first acquisition window having a first duration, and acquire a second NMR signal using a second acquisition window having a second duration, wherein the second duration is different than the first duration, and a processor coupled to the acquisition system and configured to determine a lateral displacement of the NMR tool as a function of time based on the first and second NMR signals, and apply the lateral displacement to the first NMR signal to generate NMR relaxation data with reduced motion effects.
Abstract:
Measurements of a core sample at scales of measurement that differ by multiple orders of magnitude can be used to calculate a value that fairly represents surface roughness of the core sample. This surface roughness value can be used to determine petrophysical properties of the subsurface formation from which the core sample was obtained. The measurements can be nuclear magnetic resonance (NMR) diffusion-relaxation and gas-adsorption measurements. Surface relaxivities at the different scales are determined from the measurements and a ratio those surface relaxivities can be used to calculate the surface roughness value.