Abstract:
The present invention provides a method includes: determining, by a base station, MBSFN subframe configuration signaling according to a configuration of a cell, where the MBSFN subframe configuration signaling includes CRS transmission configuration information used to indicate a region for transmitting a CRS in a time domain; sending, the MBSFN subframe configuration signaling to the user equipment; and transmitting a signal. Another method includes: determining configuration signaling according to a configuration of a cell, where the configuration signaling includes configuration information of the cell, transmitted by using a SIB 2 and used to indicate, to user equipment, configuration information of a subframe using an extended CP, or second configuration information of a CP length, used to indicate configuration information of a frequency band using an extended CP and/or a frequency band using a normal CP in at least one subframe; sending the configuration signaling to the user equipment.
Abstract:
The embodiments disclose a data transmission method, an evolved NodeB (eNB) and a User Equipment (UE), which can avoid data transmission conflict, and improve data transmission performance and scheduling flexibility. The method according to the embodiments comprises: selecting, by an eNB, a second subframe from a plurality of subframes, when the eNB does not correctly receive a data packet transmitted by a UE in a first subframe; and transmitting, by the eNB, a scheduling signaling to the UE, so that the UE transmits a retransmission packet of the data packet in the second subframe. The embodiments further provide an eNB and a UE. The embodiments of the present invention can effectively avoid data transmission conflict, and improve data transmission performance and scheduling flexibility.
Abstract:
The present invention provides a method and an apparatus for sending uplink/downlink scheduling information, and a method and an apparatus for receiving uplink/downlink scheduling information. The method for sending downlink scheduling information includes: determining, in downlink subframes on a second carrier, a first downlink subframe, in which at time corresponding to the first downlink subframe, a subframe on a first carrier is an uplink subframe; and sending, on a fifth downlink subframe on the first carrier, downlink scheduling information corresponding to the first downlink subframe on the second carrier to a terminal, in which time corresponding to the fifth downlink subframe is before the time corresponding to the first downlink subframe. The present invention achieves the purpose of performing uplink and downlink scheduling on a second carrier through a first carrier bearing a PDCCH.
Abstract:
A method, a base station, a User Equipment (UE) and a system for sending and receiving Physical Downlink Control Channel (PDCCH) signaling are disclosed. A method includes determining locations of a first search space and a second search space of a User Equipment (UE). A method also includes sending PDCCH signaling with no Carrier Indication Field (CIF) to the UE in a physically overlapped region between the first search space and the second search space if the physically overlapped region exists and a length of the PDCCH signaling with no CIF in the first search space is equal to a length of PDCCH signaling with the CIF in the second search space.
Abstract:
A method, a base station, a User Equipment (UE) and a system for sending and receiving Physical Downlink Control Channel (PDCCH) signaling are disclosed. A method includes determining locations of a first search space and a second search space of a User Equipment (UE). A method also includes sending PDCCH signaling with no Carrier Indication Field (CIF) to the UE in a physically overlapped region between the first search space and the second search space if the physically overlapped region exists and a length of the PDCCH signaling with no CIF in the first search space is equal to a length of PDCCH signaling with the CIF in the second search space.
Abstract:
Embodiments of the present invention provide a communication method, a base station, and a user equipment. The communication method includes: sending a PDCCH to a user equipment in one subframe, where the PDCCH is used to schedule transmission of PDSCHs of at least two subframes of the user equipment, the PDCCH carries first indicator information, and the first indicator information indicates a channel resource for transmitting uplink ACK/NACK information that is corresponding to the PDSCHs; determining a transmission subframe carrying the uplink ACK/NACK information that is corresponding to the PDSCHs, and receiving the uplink ACK/NACK information on the channel resource in the transmission subframe. In the embodiments of the present invention, when a PDCCH schedules multiple PDSCHs, an ACK/NACK resource indicator field is used to indicate a channel resource of ACK/NACK feedback that is corresponding to the scheduled PDSCHs, thereby improving scheduling flexibility.
Abstract:
The present invention discloses methods for receiving and sending a control channel, a user equipment, and a base station. The method for receiving a control channel includes: obtaining time-frequency resource information and first information of the control channel; determining a search space of the control channel according to the time-frequency resource information and the first information; and receiving the control channel in the search space. By using the methods, the user equipment and the base station according to embodiments of the present invention, the search space of the control channel can be determined according to the time-frequency resource information and the first information of the control channel, so that receiving and sending of the control channel can be implemented and a capacity of the control channel can be expanded, thereby improving system scheduling efficiency and flexibility and further improving user experience.
Abstract:
Embodiments of the present invention provide a method for detecting and sending control signaling, a user equipment, and a base station. The detecting method includes: obtaining, by a UE, a transmission mode of a data channel configured by a base station; determining, by the UE, a first DCI format and a second DCI format that are corresponding to the transmission mode, where PDCCH information corresponding to the first DCI format is transmitted in a precoding-based mode, and PDCCH information corresponding to the second DCI format is transmitted in a single-antenna port mode or transmit diversity mode based on non-precoding; and detecting, by the UE and in a subframe, PDCCH information corresponding to the first DCI format and the second DCI format according to a mode in which the PDCCH information is transmitted.
Abstract:
A method and related apparatuses for Contention Based (CB) uplink transmission are provided by the present invention. And the method includes: configuring CB user group numbers and configuring a same CB Radio Network Temporary Identifier (CB-RNTI) for multiple CB user groups; for the multiple CB user groups having the same CB-RNTI, configuring a same CB Grant. With the present invention, it is not necessary to send a CB Grant for every CB user group, so that the resource overhead for CB Grant transmission is reduced, and thus the occurring probability of scheduling blocking is reduced.
Abstract:
A method, a base station, a User Equipment (UE) and a system for sending and receiving Physical Downlink Control Channel (PDCCH) signaling are disclosed. A method includes determining locations of a first search space and a second search space of a User Equipment (UE). A method also includes sending PDCCH signaling with no Carrier Indication Field (CIF) to the UE in a physically overlapped region between the first search space and the second search space if the physically overlapped region exists and a length of the PDCCH signaling with no CIF in the first search space is equal to a length of PDCCH signaling with the CIF in the second search space.