摘要:
A solar cell includes a photoelectric conversion layer, a first electrode on one surface of the photoelectric conversion layer, a second electrode provided on other surface of the photoelectric conversion layer, and a third electrode on the other surface of the photoelectric conversion layer. The third electrode is substantially rectangular with its corners rounded off in the in-plane direction of the photoelectric conversion layer, and overlaps the second electrode at the periphery thereof.
摘要:
Forming an impurity diffusion layer of the second conductivity type and an antireflective film on one surface side of a semiconductor substrate of the first conductivity type; applying the first electrode material onto the antireflective film; forming a passivation film on the other surface side of the semiconductor substrate; forming openings in the passivation film to reach the other surface side; applying a second electrode material containing impurity elements of the first conductive type to fill the openings and not to be in contact with the second electrode material of adjacent openings; applying a third electrode material onto the passivation film to be in contact with the entire second electrode material; forming at a time, by heating the semiconductor substrate at a predetermined temperature after applying the first electrode material and the third electrode material, the first electrodes, a high-concentration region, and the second electrodes and third electrode.
摘要:
It is an object of the present invention to provide a solar cell with improved mechanical strength without increasing resistance between the electrodes.The solar cell (10) according to the present invention includes a silicon substrate (3), an aluminum electrode (1) that is a first electrode that collects electricity from the rear surface of the silicon substrate (3), and a silver electrode (2) that is a second electrode that takes out output from the aluminum electrode (1). The aluminum electrode (1) has an opening (1a) formed on rear surface of the silicon substrate (3) and a notch (1b) recesses in parallel to the direction in which principal stress acts from the opening (1a) in a plane of the silicon substrate (3), and the silver electrode (2) is formed to cover at least the opening (1a) and the notch (1b) of the aluminum electrode (1).
摘要:
A solar cell has a non-light-receiving side and a light-receiving side that faces a backside of an optically-transparent cover plate. A heatsink has a backside that faces the non-light-receiving side of the solar cell. The heatsink is formed of a graphite-containing material having a concave and convex texture as a radiating fin.
摘要:
This invention is to safely and surely distribute authentication information to users or user terminals. This method includes: requesting authentication using predetermined authentication information for an access destination via a network; receiving a notification indicating an authentication failure from the access destination; acquiring currently valid authentication information from an authentication information manager by transmitting data to indicate own legitimacy, and storing the acquired currently valid authentication information into a storage device; and requesting the authentication using the acquired currently valid authentication information for the access destination via the network. Thus, by supposing that a failure in the authentication occurs, and by causing the user side to present the data to indicate own legitimacy for the authentication information manager, the currently valid authentication information is distributed, for example, after the encryption.
摘要:
A solar cell includes a photoelectric conversion substrate, a first electrode on one surface of the substrate, a second electrode on the other surface of the substrate, and a third electrode on the other surface of the substrate. The third electrode extracts electric power from the second electrode, and overlaps the second electrode at the periphery in the in-plane direction of the photoelectric conversion substrate. The thickness of the second electrode is larger than that of the third electrode, and the difference between the thickness of the second electrode and that of the third electrode is not less than 10 micrometers and not more than 30 micrometers.
摘要:
In a foot of a legged mobile robot, deformation of the foot is absorbed by a first concavity and the position and shape of a ground-contact portion hardly change. Accordingly, variation in a resistive force against the moment about the yaw axis can be reduced and a spinning motion can be prevented. In addition, when the foot is placed on a bump or a step, a flexible portion deforms and receives it, and a frictional retaining force is generated between the flexible portion and the bump. Thus, the foot is flexibly adapted to the road surface, and sliding caused by the bump and excessively fast motion are prevented. Accordingly, the foot can be adapted to various kinds of road surfaces such as surfaces having bumps and depressions, and the attitude stability can be increased.
摘要:
In a foot of a legged mobile robot, deformation of the foot is absorbed by a first concavity and the position and shape of a ground-contact portion hardly change. Accordingly, variation in a resistive force against the moment about the yaw axis can be reduced and a spinning motion can be prevented. In addition, when the foot is placed on a bump or a step, a flexible portion deforms and receives it, and a frictional retaining force is generated between the flexible portion and the bump. Thus, the foot is flexibly adapted to the road surface, and sliding caused by the bump and excessively fast motion are prevented. Accordingly, the foot can be adapted to various kinds of road surfaces such as surfaces having bumps and depressions, and the attitude stability can be increased.
摘要:
By altering the assembly condition (for example, frame bent depth, type and height of precoat resin, type of mold resin) of an optically coupled device, the quantity of light arriving at a photodetector (for example, a phototransistor) from a photoemitter (for example, an infrared-emitting diode) is set to be a value within a predetermined range. As a result, an optically coupled device having a current transmission rate within a particular range can be fabricated, independent of the performance of the photoemitter and the performance of the photodetector. Thus, the yield of the optically coupled device can be improved.