Abstract:
In a liquid crystal display device, a common electrode is formed on an organic passivation film, an interlayer insulating film is formed on the common electrode, a pixel electrode with a slit is formed on the interlayer insulating film, and a through hole is formed in the organic passivation film and the interlayer insulating film, so that the pixel electrode is connected to a source electrode of a TFT through the through hole. Further, the taper angle around the upper base of the through hole is smaller than the taper angle around the lower base. Thus, the alignment film material can easily flow into the through hole when the diameter of the through hole is reduced to connect the pixel and source electrodes, preventing display defects such as uneven brightness due to the absence of the alignment film or due to the alignment film irregularity around the through hole.
Abstract:
To take measures against the phenomenon of difficulty for the orientation film material to flow into the through-hole when the diameter of through-holes which connects the pixel electrode and the source electrode becomes small.An interlayer insulating film 109 made of SiN is formed on a counter electrode, and a pixel electrode 110 having a slit 1101 is formed on the interlayer insulating film 109. A through-hole 111 which connects the pixel electrode 110 and the source electrode of a TFT has a large opening on the upper side, a small opening on the lower side, and an inner wall extending between the large opening and the small opening. The pixel electrode 110 covers the through-hole 111 on an inner side of the pixel of the through-hole 111 but does not cover a periphery of the large opening of the through-hole on an outer side of the through-hole 111. Consequently, an orientation film material can easily flow from a starting point given by an end portion of the pixel electrode into the inside of the through-hole.
Abstract:
To prevent a phenomenon that an alignment film material is difficult to flow into the through-hole where a diameter of a through-hole for connecting between a pixel electrode and a source electrode is reduced.A liquid crystal display device comprising a TFT substrate having pixels each including a common electrode formed on an organic passivation film, an interlayer insulating film formed so as to cover the common electrode, a pixel electrode having a slit and formed on the interlayer insulating film, a through-hole formed in the organic passivation film and the interlayer insulating film, and a source electrode electrically conducted to the pixel electrode via the through-hole. A taper angle at a depth of D/2 of the through-hole is equal to or more than 50 degrees. The pixel electrode covers part of a side wall of the through-hole but does not cover the remaining part of the side wall of the through-hole. This configuration facilitates the alignment film material to flow into the through-hole, thereby solving a thickness unevenness of the alignment film in vicinity of the through-hole.
Abstract:
The present invention prevents the shaving of an alignment film caused by a columnar spacer in a liquid crystal display device of an IPS method using photo-alignment. A plinth higher than a pixel electrode is formed at a part where a columnar spacer formed over a counter substrate touches a TFT substrate. When an alignment film of a double-layered structure is applied over the pixel electrode and the plinth, the thickness of the alignment film over the plinth reduces by a leveling effect. When photo-alignment is applied in the state, a photodegraded upper alignment film over the plinth disappears and a lower alignment film having a high mechanical strength remains. As a result, it is possible to prevent the shaving of the alignment film.
Abstract:
In a liquid crystal display device, a common electrode is formed on an organic passivation film, an interlayer insulating film is formed on the common electrode, a pixel electrode with a slit is formed on the interlayer insulating film, and a through hole is formed in the organic passivation film and the interlayer insulating film, so that the pixel electrode is connected to a source electrode of a TFT through the through hole. Further, the taper angle around the upper base of the through hole is smaller than the taper angle around the lower base. Thus, the alignment film material can easily flow into the through hole when the diameter of the through hole is reduced to connect the pixel and source electrodes, preventing display defects such as uneven brightness due to the absence of the alignment film or due to the alignment film irregularity around the through hole.
Abstract:
In a liquid crystal display device, a light shielding film, a color filter, an overcoat film, and an alignment film are formed in this order on a counter substrate. However, the alignment film is not formed in a seal portion. When the alignment film is subjected to photo-alignment with ultraviolet radiation, a portion of the overcoat film not covered with the alignment film is degraded by ultraviolet radiation. In order to prevent moisture penetrating from the degraded overcoat film from reaching the light shielding film to thereby alter the light shielding film and from causing the peeling of the light shielding film, the color filter is disposed below the overcoat film to block the moisture.
Abstract:
A liquid crystal display device has a liquid crystal display panel including pixels each having an active device, a pixel electrode, a common electrode and a liquid crystal layer arranged in a dot matrix array. The liquid crystal display panel has a first substrate, a second substrate, and a liquid crystal layer provided between the first substrate and the second substrate. The first substrate has the active device, the pixel electrode, the common electrode and a first alignment film. The second substrate has a second alignment film. The first alignment film and the second alignment film are respectively a photo alignment film formed by irradiating a photo decomposition type insulating film with light. The second alignment film has a thickness of at least 10 nm and no greater 50 nm and is thinner than the first alignment film.
Abstract:
A method for fabricating a liquid crystal display device including a TFT substrate having an alignment film formed thereon, an opposing substrate, and a liquid crystal layer sandwiched therebetween. The alignment film on the TFT substrate includes a photolytic polymer made from a first precursor including cyclobutane, and a non-photolytic polymer made from a second precursor. The method includes the steps of depositing a mixture material including the first precursor and the second precursor in which the second precursor settles more on an upper surface of the TFT substrate than the first precursor, imidizing the mixture material, and irradiating the mixture material with ultraviolet light for photo-alignment, and after irradiating, heating the mixture material to form the alignment film.
Abstract:
A liquid crystal display device includes a TFT substrate having a first alignment film and an opposing substrate having a second alignment film with liquid crystals sandwiched therebetween. One of the first and second alignment films, comprises a first polyimide produced via polyamide acid ester containing cyclobutane as a precursor and a second polyimide produced via polyamide acid as a precursor. The polyamide acid has a higher polarity than that of the polyamide acid ester. The one of the first and second alignment films is responsive to photo-alignment. A first side of the one of the first and second alignment films is adjacent to the liquid crystals, and a second side thereof is closer to one of the TFT substrate and the counter substrate than the first side. The first side contains more of the first polyimide and less of the second polyimide than the second side.
Abstract:
A display device includes a first substrate, a second substrate and liquid crystals therebetween, the first substrate having a flat portion, an alignment film, and a concavo-convex pedestal formed in a pixel region, wherein the concavo-convex pedestal having at least two convex portions and recessed portions, and the at least two convex portions of the concavo-convex pedestal are at a position lower than a position of the flat portion. A thickness of the alignment film on the convex portions is less than a thickness of the alignment film on the recessed portions, and a second substrate has a columnar spacer which contacts the at least two convex portions of the concavo-convex pedestal.