Abstract:
An organic electroluminescence display device includes: a lower electrode that is made of a conductive inorganic material and formed in each of pixels arranged in a matrix in a display area; a light-emitting organic layer that is in contact with the lower electrode and made of a plurality of different organic material layers including a light-emitting layer emitting light; an upper electrode that is in contact with the light-emitting organic layer, formed so as to cover the whole of the display area, and made of a conductive inorganic mate-rial; and a conductive organic layer that is in contact with the upper electrode, formed so as to cover the whole of the display area, and made of a conductive organic material.
Abstract:
A display device is provided including a plurality of pixels, wherein the plurality of pixels is arranged in a matrix form, wherein each of the plurality of pixels has an emission region and a transparent region, and wherein the emission region has a light-emitting element, and the transparent region has at least a part of a storage capacitor having transparency and is covered with at least one electrode of the storage capacitor, a first electrode covers the plurality of pixels, a light-emitting layer is arranged below the first electrode, a second electrode is arranged below the light-emitting layer, and the storage capacitor includes the first electrode.
Abstract:
A display device includes a pixel electrode provided on an insulating surface, a pixel separation film provided on an end of the pixel electrode, a light-emitting layer provided to cover the pixel electrode, and a counter electrode provided to cover the light-emitting layer and the pixel separation film. The pixel separation film includes a photoelectric conversion element, one of a first electrode and a second electrode of the photoelectric conversion element is electrically connected to the counter electrode, and the other is electrically connected to a wiring through which current generated by the photoelectric conversion element flows.
Abstract:
An organic EL display device includes: a TFT substrate that includes a display area in which pixels are arranged in a matrix; and a color filter substrate that is provided to face the TFT substrate and includes an area transmitting light in a predetermined wavelength range for each of the pixels. Each of the pixels of the TFT substrate includes a pair of electrodes, at least two light emission layers that are arranged between the pair of electrodes, and a charge generation layer that is arranged between the at least two light emission layers, is a layer to generate a pair of positive and negative charges, and has different film thicknesses in accordance with the predetermined wavelength range of the corresponding area.
Abstract:
An organic electroluminescence display device includes: a lower electrode that is made of a conductive inorganic material and formed in each of pixels arranged in a matrix in a display area; a light-emitting organic layer that is in contact with the lower electrode and made of a plurality of different organic material layers including a light emitting layer emitting light; an upper electrode that is in contact with the light-emitting organic layer, formed so as to cover the whole of the display area, and made of a conductive inorganic material; and a conductive organic layer that is in contact with the upper electrode, formed so as to cover the whole of the display area, and made of a conductive organic material.
Abstract:
An organic display device includes a pixel driving circuit having a thin film transistor connected to a current supply line and a capacitor. A first insulation layer, with a first electrode thereon, covers a source electrode of the transistor. The first electrode is connected to the transistor through a contact hole in the insulation layer. A second insulation layer including an aperture is formed on the first insulation layer and electrode layers. An organic light emitting layer, with a second electrode thereon is formed in the aperture and connected to the first electrode. The second insulation layer includes an inner wall at the aperture, said inner wall having a surface of a convex plane on an edge of the recessed part of the first electrode. The convex plane is located between the organic light emitting layer and the edge of the first electrode, and the second electrode is formed over plurality of pixels.
Abstract:
A method of manufacturing a display device includes bonding together a first substrate and a second substrate sandwiching a first bonding material and a second bonding material, a substrate being formed by bonding the first and the second substrate and including a plurality of the display devices, the first bonding material being arranged in at least a display region, the second bonding material being a part of a terminal region and being arranged so as to cover the terminal, and the second bonding material having a stronger adhesion per unit area with respect to the second substrate than the first bonding material; cutting the second substrate at a cutting position between the terminal region and the display region for each of the display devices; removing the second substrate of the terminal region from the display device; and separating each of the display devices from the plurality of display devices.
Abstract:
A display device includes a plurality of pixel electrodes, a common electrode disposed from a display area to a peripheral area continuously, a light emitting layer disposed between the plurality of pixel electrodes and the common electrode, and a plurality of auxiliary wirings electrically connecting to the common electrode and located from the display area to the peripheral area continuously. The common electrode includes overlapping areas where the common electrode is in contact with and overlaps the auxiliary wiring in the peripheral area, and includes a thick film portion in at least a portion of the overlapping areas. A thickness of the thick film portion is larger than that of an area other than the overlapping areas.
Abstract:
A light-emitting element display device includes a light-emitting element display panel that displays an image by light emission of light-emitting regions of a plurality of sub-pixels. Each of the pixels includes a first R sub-pixel, a second R sub-pixel, a first G sub-pixel, a second G sub-pixel, a first B sub-pixel and a second B sub-pixel. The second R sub-pixel, the second G sub-pixel, and the second B sub-pixel include a W electrode as a common electrode that causes the second R sub-pixel, the second G sub-pixel, and the second B sub-pixel to simultaneously emit lights in response to the application of a potential. The driver circuit includes a sub-pixel control unit that calculates a peak luminance in a screen based on the video signal and controls the plurality of sub-pixels based on the peak luminance.
Abstract:
An organic EL display device includes: a lower electrode; an upper electrode; a first organic layer which is disposed between the lower electrode and the upper electrode and is formed of a plurality of layers including a light emitting layer formed of an organic material that emits light; a metal wire that extends between the pixels within the display region; and a second organic layer which is formed of a plurality of layers the same as that of the first organic layer and which comes into contact with a part of the metal wire and does not come into contact with the first organic layer. The upper electrode comes into contact with the metal wire in the periphery of the second organic layer. Accordingly, it is possible to uniformise the potential of the upper electrode without reducing the light emission area.