Abstract:
A thallium-free high pressure ceramic metal halide lamp having superior dimming characteristics with a fill composition comprising MgI2 and CeI3. In addition, the fill chemistry comprises NaI and the halides of rare earth metals such as Dy, Ho and Tm.
Abstract:
An electrodeless compact fluorescent lamp operated at a frequency from 50 KHz to 1000 KHz and RF power from 10 W to 40 W is described. The lamp includes a bulbous glass envelope (1) filled with rare gas and metal vapor, reentrant glass cavity (2), an induction coil (6) made from Litz wire, a ferrite assembly comprising a ferrite core (7) and MnZn ferrite disk (11), a cooling structure comprising a metal (or ceramic) tube (8) positioned inside the ferrite core (7) and a metal (or ceramic) unit (9) that transmits the heat from the cavity and ferrite assembly to the Edison socket (10), a thermal shield (12), and a driver and matching network located inside the lamp base (13). A protective coating (15) and phosphor coating (16) are coated on the inner surface of the envelope (1) and reentrant cavity (2). The reflective coating (17) made from alumina is coated on the inner surface of the cavity (2) and on the outer surface of the envelope bottom (4). The mercury pressure is controlled in the envelope by the temperature of the amalgam (5) positioned in the tubulation (3) or by the temperature of pure mercury located in the cold spot.
Abstract:
A discharge lamp adapted to operate on DC current and being equivalent to an AC-operated ceramic metal halide lamp in different operating positions. The lamp comprises a ceramic arc tube with a fill of mercury, rare gas and metal halides. The arc tube is sealed with an anode and a cathode and has at least one metal heat shield on the cathode side of the ceramic DC metal halide arc tube to achieve operation of the lamp with universal orientation. Each of the two electrodes sealed into the arc tube are different, the anode being formed of tungsten with a ball shaped tip and the cathode being formed of a thoriated tungsten rod and a wound coil of the rod.
Abstract:
An electrodeless fluorescent lamp containing a fill of a rare gas and mercury and a flag (14) disposed therein at a predetermined location in the lamp for increasing the rate of luminous development in the lamp. The flag (14) includes a pair of spaced-apart metallic foil sections (31) and a metallic mesh substrate (30) disposed between the foil sections (31) whereby to be shielded from ion bombardment of the discharge. A coating (30a) of indium which is adapted to amalgamate with the mercury is disposed on the mesh (30). The sections are joined together by spot-welding (32) to enable migration of mercury into and out of the space between the sections thereby enable the atoms to form an amalgam with the indium and be rapidly released therefrom.
Abstract:
A narrow band light source is combined with a narrow band filter on the face of a traffic light to reduce the problem of sun glare reflected from one traffic light, reducing intensity of the sunlight glare while light from the narrow band source passes through the filter essentially unattenuated, allowing system efficiency to remain high.
Abstract:
A negative glow discharge lamp having improved efficacy enabled by reducing the anode work function by the introduction of a metal-based gas into the lamp envelope for absorption on the anode. The metal-based gas is preferably cesium but may also, for example, be sodium.
Abstract:
A glow discharge lamp includes a light-transmitting envelope containing a rare gas fill material. The envelope contains a spherical-shaped region having a predetermined internal radius R. A phosphor coating is disposed on the inner surface of the envelope. Anode and cathode electrodes are disposed within the envelope and spaced a predetermined distance d thereapart. The voltage drop of the cathode electrode is less than the excitation potential of the rare gas fill material. The anode electrode has a predetermined effective surface area S.sub.a such that the relationship Rd/S.sub.a is within the range of from about 5.0 to 11.0.
Abstract:
A glow discharge lamp that includes a light transmitting envelope containing a noble gas fill material and a pair of electrodes disposed in the envelope. Lead-in wires coupled to the electrodes and extend to and are hermetically sealed in the envelope The electrodes are disposed in oppositely spaced positions in the envelope preferably upper and lower positions with the electrodes positioned outside of the bulbous region of the envelope to thereby retard the formation of deposits at the main bulbous region of the envelope.
Abstract:
A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.
Abstract:
A negative glow discharge lamp including a light transmitting envelope having supported therein electrode means for establishing a negative glow discharge in the lamp. The fill material includes a metal-based gas such as sodium which, upon excitation thereof, directly emits visible light. The sodium has a resonance radiation in the visible part of the spectrum. The cathode is a hot cathode.